CS489/689

Privacy, Cryptography, Network and Data Security

Last Class: Padding Attack and MAC/Encrypt

- Learn activities were due today
- Responses will be used to finish the content
- If the content will not fit within the remainder of the crypto section Thursday I will record a lecture and release it with slides on Learn next week

Today: DLP, El Gamal, ...

$$
h=g^{x} \text {, find } x
$$

But don't forget about me

Discrete Logarithm Problem

The Discrete Logarithm Problem

Given $(\mathrm{g}, \mathrm{h}) \in \mathbf{G} \times \mathbf{G}$, find $\mathrm{x} \in \mathbf{Z}_{\mathrm{q}}{ }^{*}$ such that:

$$
h=g^{x}
$$

(Here \mathbf{G} is a multiplicative group of prime order q)

Solutions to the Discrete Logarithm Problem?

If there's one solution, there are infinitely many (thank you Fermat's little theorem)

Fermat's Little Theorem (Recall attack Naive RSA)

Theorem: Let p be a prime number and let a be any integer. Then:

$$
a^{p-1} \equiv\left\{\begin{array}{l}
1(\bmod p) \text { if } p \text { does not divide } a \\
0(\bmod p) \text { if } p \text { does divide } a, p \mid a
\end{array}\right.
$$

How to solve DLP in cyclic groups of prime order?

- Is the group cyclic, finite, and abelian?

```
Baby-step/Giant-step
algorithms!!!
```


How to solve DLP in cyclic groups of prime order?

- Is the group cyclic, finite, and abelian?

$$
\begin{aligned}
& \text { Baby-step/Giant-step } \\
& \text { algorithms!!! }
\end{aligned}
$$

Ohhhhhh. Divide and conquer since the bottleneck is solving DLP in the cyclic subgroups of prime order.

How to solve DLP in cyclic groups of prime order?

- Is the group cyclic, finite, and abelian?

$$
\begin{aligned}
& \text { Baby-step/Giant-step } \\
& \text { algorithms!!! }
\end{aligned}
$$

Ohhhhhh. Divide and conquer since the bottleneck is solving DLP in the cyclic subgroups of prime order.

For generic groups, the complexity of the Baby-step/giant-step algorithm dominates the time required.

How to solve DLP in cycli

oun fprim\%order?

- Is the group cyclic finite, a

Baby-Step/Giant-Step Algorithm? Notation.

- A public cyclic group $G=<g>$ which has prime order p
- $h \in G$, goal: find $x(\bmod p)$ such that $h=g^{x}$
- Divide and conquer?

$$
x=x_{0}+x_{1} *\lceil\operatorname{sqrt}(p)\rceil
$$

Baby-Step/Giant-Step Algorithm? Notation.

- A public cyclic group $G=<g>$ which has prime order p
- $h \in G$, goal: find $x(\bmod p)$ such that $h=g^{x}$
- Divide and conquer?

$$
x=x_{0}+x_{1} *\lceil\operatorname{sqrt}(p)\rceil
$$

Baby-step/Giant-Step Algorithm

1. $x=x_{0}+x_{1}^{*}\lceil\operatorname{sqrt}(p)\rceil$

Baby-step/Giant-Step Algorithm

1. $x=x_{0}+x_{1} *\lceil\operatorname{sqrt}(p)\rceil$
2. $0 \leq x_{0}, x_{1}<\lceil\operatorname{sqrt}(p)\rceil$

Since $0 \leq x \leq p, \ldots$
3.

Baby-step/Giant-Step Algorithm

1. $x=x_{0}+x_{1}{ }^{*}\lceil\operatorname{sqrt}(p)\rceil$
2. $0 \leq x_{0}, x_{1}<\lceil\operatorname{sqrt}(p)\rceil$
3. Baby-step: $g_{i} \leftarrow g^{i}$ for $0 \leq i<\lceil\operatorname{sqrt}(p)\rceil$

Baby-step/Giant-Step Algorithm

1. $x=x_{0}+x_{1}{ }^{*}\lceil\operatorname{sqrt}(p)\rceil$
2. $0 \leq x_{0}, x_{1}<\lceil\operatorname{sqrt}(p)\rceil$
3. Baby-step: $\mathrm{g}_{\mathrm{i}} \leftarrow \mathrm{g}^{i}$ for $0 \leq i<\lceil\operatorname{sqrt}(\mathrm{p})\rceil$

Baby-step/Giant-Step Algorithm

1. $x=x_{0}+x_{1}{ }^{*}\lceil\operatorname{sqrt}(p)\rceil$
2. $0 \leq x_{0}, x_{1}<\lceil\operatorname{sqrt}(p)\rceil$
3. Baby-step: $\mathrm{g}_{\mathrm{i}} \leftarrow \mathrm{g}^{\mathrm{i}}$ for $0 \leq i<\lceil\operatorname{sqrt}(\mathrm{p})\rceil$
4. Giant-step: $\mathrm{h}_{\mathrm{j}} \leftarrow \mathrm{h}^{*} \mathrm{~g}^{-\mathrm{j}\lceil\text { sqrt(p) })}$, for $0 \leq \mathrm{j}<\lceil\operatorname{sqrt}(\mathrm{p})\rceil$
5.

Baby-step/Giant-Step Algorithm

1. $x=x_{0}+x_{1} *\lceil$ sqrt $(p)\rceil$
2. $0 \leq x_{0}, x_{1}<\lceil\operatorname{sqrt}(p)\rceil$
3. Baby-step: $\mathrm{g}_{\mathrm{i}} \leftarrow \mathrm{g}^{\mathrm{i}}$ for $0 \leq i<\lceil\operatorname{sqrt}(\mathrm{p})\rceil$
4. Giant-step: $\mathrm{h}_{\mathrm{j}} \leftarrow \mathrm{h}^{*} \mathrm{~g}^{-\mathrm{j}\lceil\text { 「sqr(p) })}$, for $0 \leq \mathrm{j}<\lceil$ sqrt $(\mathrm{p})\rceil$
5. Try to find a batch between baby-step and giant-step

Overall time and space $O($ sqrt(p))

Baby-step/Giant-Step Algg

1. $x=x_{0}+x_{1} * \Gamma \operatorname{sqrt}(p) 1$
2. $0 \leq x_{0}, x_{1}<$ 「sqrt
3. Gian

DLP Example, $182=64^{x}(\bmod 607)$

- Note: the subgroup of order 101 in F_{607}, generater by $g=64$

i	i	$64^{i}(\bmod 607)$			${ }^{-11 * j}(\bmod 607)$
0	6	Baby-step: $\mathbf{g}_{\mathbf{i}} \leftarrow \mathbf{g}^{\mathbf{i}}$ for $0 \leq \mathrm{i}<\lceil$ sqrt(p) $\rceil$$\begin{aligned} & g=64 \\ & \Gamma \operatorname{sqrt}(p)\rceil=10 \end{aligned}$		6	
1	7			7	
2	8			8	
3	9				
4	10		4	10	
5	-		5	-	

DLP Example, $182=64^{x}(\bmod 607)$

i		i	$64^{i}(\bmod 607)$
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288
5	100	-	

DLP Example, $182=64^{x}(\bmod 607)$

i		i	$64^{i}(\bmod 607)$
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288
5	100	-	

j		j	$182^{*} 64^{-11 * j}(\bmod 607)$	
0	182	6	60	
1	143	7	394	
2	2	69	8	483
	3	271	9	76
	3	343	10	580

DLP Example, $182=64^{x}(\bmod 607)$

i		i	$64^{i}(\bmod 607)$
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288
5	100	-	

j		j	$182^{*} 64^{-11 * j}(\bmod 607)$	
0	182	6	60	
1	143	7	394	
4	2	69	8	483
	2	271	9	76
	3	343	10	580
	5	573	-	

DLP Example, $182=64^{x}(\bmod 607)$

i		i	$64^{i}(\bmod 607)$		j	$182^{*} 64^{-11 * j}(\bmod 607)$
0	1	6	330	182	6	60
1	64	7	482	143	7	394
2	454	8	498	69	8	483
3	527	9	308	271	9	76
4	343	10	288	343	10	580
5	10					

DLP Example, $182=64^{x}(\bmod 607)$

i		i	$64^{i}(\bmod 607)$	j		j	$182^{*} 64{ }^{-11 \times j}(\bmod 607)$
0	1	6	330	0	182	6	60
1	64	7	482	1	143	7	394
2	454	8	498	2	69	8	483
3	527	9	308	3	271	9	76
4	343	10	288	4	343	10	580
5	10	So: $\mathrm{x}=4+11 * 4=48$.					

DLP Example, $182=64^{x}(\bmod 607)$

i		i	$64^{i}(\bmod 607)$
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288

$5 \quad 10$

The value x

Q: Consider, $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$ and that x has been chosen such that the base-2 representation has few non-zeros.

The value x

Q: Consider, $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$ and $\mathrm{x} \in \mathrm{Z}_{31}$ * has been chosen such that the base-2 representation has few non-zeros. Let $\mathrm{g}=3$ and $\mathrm{h}=11$. Each Y_{b} is length five with 2 bits of value 1 .

The value x

Q: Consider, $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$ and $\mathrm{x} \in \mathrm{Z}_{31}$ * has been chosen such that the base-2 representation has few non-zeros. Let $\mathrm{g}=3$ and $\mathrm{h}=11$. Each Y_{b} is length five with 2 bits of value 1 .
Recall,
Giant: $\mathbf{g}_{\mathbf{i}} \leftarrow \mathbf{g}^{\mathbf{i}}$
Baby: $\mathbf{h}_{\mathbf{j}} \leftarrow \mathbf{h}^{\star} \mathbf{g}^{-\mathrm{j} \text { [} \text { sart(31) } 7}$

Submit a match and four other rows.

Giant-Step	Baby-Step		
Y_{1}		$?$	Y_{2}
00011	27	00011	5
00110	16	00110	22
00101	26	00101	$h \cdot g^{\text {-val(00101) }}$
\vdots	\vdots	\vdots	\vdots
10010	4	10010	$h \cdot g^{\text {-val(10010) }}$
10001	22	10001	$h \cdot g^{\text {-val(10001) }}$
$x=$		$17+6=23$	

Thursday: More Cryptography...

Symmetric
Asymmetric

FAQ: Groups/Math Definitions

A Group:

- A set with an operation on its elements which
- Is closed
- Has an identity
- Is associative, and
- Every element has an inverse
- Commutative groups are called abelian

Groups with properties

- A cyclic group of prime order cannot be broken down into smaller groups
- Cyclic subgroups are generated by a generator g raised to a series of powers (the group consists of all its integer powers)

Mini Proof of Fermat's Little Theorem

- If pla, then every power of a is divisible p.

Mini Proof of Fermat's Little Theorem

- If pla, then every power of a is divisible p. So we can skip it.

Mini Proof of Fermat's Little Theorem

- If pla, then every power of a is divisible p. So we can skip it.
- So what about when p doesn't divide a ?
- $a, 2 a, 3 a, \ldots,(p-1) a \quad$ reduced modulo p

```
...p-1 numbers in the
list...we claim they
are all different.
```


Mini Proof of Fermat's Little Theorem

- If pla, then every power of a is divisible p. So we can skip it.
- So what about when p doesn't divide a ?
- $a, 2 a, 3 a, \ldots,(p-1) a \quad$ reduced modulo p

```
...p-1 numbers in the
```

 list...we claim they are all different.

Mini Proof of Fermat's Little Theorem

- If pla, then every power of a is divisible p. So we can skip it.
- So what about when p doesn't divide a ?
- $a, 2 a, 3 a, \ldots,(p-1) a$ reduced modulo p

```
...p-1 numbers in the
```


Mini Proof of Fermat's Little Theorem

- When p doesn't divide a ?
- $a, 2 a, 3 a, . . .,(p-1) a$
reduced modulo p
- Consider ja mod pand ka mod p

1) Suppose they are the same

Mini Proof of Fermat's Little Theorem

- When p doesn't divide a ?
- $a, 2 a, 3 a, . . .,(p-1) a$
reduced modulo p

1) Suppose they are the same

- Then, $j a \equiv k a(\bmod p)$, and, $(j-k) a \equiv 0(\bmod p)$

Mini Proof of Fermat's Little Theorem

- When p doesn't divide a ?
- $a, 2 a, 3 a$, ..., (p-1)a
- Consider ja mod p and $k a \bmod p$

1) Suppose they are the same

- Then, $j a \equiv k a(\bmod p)$, and, $(j-k) a \equiv 0(\bmod p)$

2) Thus $p \mid(j-k) a$

Mini Proof of Fermat's Little Theorem

- When p doesn't divide a ?
- $a, 2 a, 3 a, . . .,(p-1) a$
- Consider ja mod pand $k a \bmod p$

1) Suppose they are the same

- Then, $j a \equiv k a(\bmod p)$, and, $(j-k) a \equiv 0(\bmod p)$ Etc...

2) Thus $p \mid(j-k) a$
