CS489/689 Privacy, Cryptography, Network and Data Security

Winter 2023, Tuesday/Thursday 8:30-9:50am

Last Class: Padding Attack and MAC/Encrypt

- Learn activities were due today
- Responses will be used to finish the content
- If the content will not fit within the remainder of the crypto section Thursday I will record a lecture and release it with slides on Learn next week

Today: DLP, El Gamal, ...

 $h = g^x$, find x

But don't forget about me

CS489 Winter 2023

Discrete Logarithm Problem

The Discrete Logarithm Problem Given (g,h) \in **G** x **G**, find x \in **Z**_q* such that: **h** = **g**^x

(Here **G** is a multiplicative group of prime order q)

Solutions to the Discrete Logarithm Problem?

If there's one solution, there are infinitely many (thank you Fermat's little theorem)

Fermat's Little Theorem (Recall attack Naive RSA) Theorem: Let *p* be a prime number and let *a* be any integer. Then:

> a^{p-1} = 1 (mod p) if p does not divide a 0 (mod p) if p does divide a, p|a

How to solve DLP in cyclic groups of prime order?

• Is the group cyclic, finite, and abelian?

How to solve DLP in cyclic groups of prime order?

• Is the group cyclic, finite, and abelian?

Baby-step/Giant-step algorithms!!!

Ohhhhhh. Divide and conquer since the bottleneck is solving DLP in the cyclic subgroups of prime order.

How to solve DLP in cyclic groups of prime order?

• Is the group cyclic, finite, and abelian?

Baby-step/Giant-step algorithms!!!

Ohhhhhh. Divide and conquer since the bottleneck is solving DLP in the cyclic subgroups of prime order.

For **generic groups**, the complexity of the Baby-step/giant-step algorithm dominates the time required.

Baby-Step/Giant-Step Algorithm? Notation.

- A public cyclic group G = <g> which has prime order p
- $h \in G$, goal: find x (mod p) such that $h = g^x$

• Divide and conquer?

$$x = x_0 + x_1 + r_s qrt(p)$$

Baby-Step/Giant-Step Algorithm? Notation.

- A public cyclic group G = <g> which has prime order p
- $h \in G$, goal: find x (mod p) such that $h = g^x$

• Divide and conquer?

$$x = x_0 + x_1 + r_s qrt(p)$$

1. $x = x_0 + x_1 + r_s qrt(p)$

- 1. $x = x_0 + x_1 + [sqrt(p)]$
- 2. 0≤ x₀, x₁ < Γsqrt(p)]

3.

CS489 Winter 2023

- 1. $x = x_0 + x_1 + [sqrt(p)]$
- 2. 0≤ x₀, x₁ < ⌈sqrt(p)⌉
- 3. Baby-step: $g_i \leftarrow g^i$ for $0 \le i < \lceil sqrt(p) \rceil$

- 1. $x = x_0 + x_1 + [sqrt(p)]$
- 2. 0≤ x₀, x₁ < Γsqrt(p)]
- 3. Baby-step: $g_i \leftarrow g^i$ for $0 \le i < \lceil sqrt(p) \rceil$

- 1. $x = x_0 + x_1 + [sqrt(p)]$
- 2. 0≤ x₀, x₁ < Γsqrt(p)]

- 3. Baby-step: $g_i \leftarrow g^i$ for $0 \le i < \lceil sqrt(p) \rceil$
- 4. Giant-step: $h_j \leftarrow h^*g^{-j \lceil sqrt(p) \rceil}$, for $0 \le j < \lceil sqrt(p) \rceil$

5.

- 1. $x = x_0 + x_1 + [sqrt(p)]$
- 2. 0≤ x₀, x₁ < ⌈sqrt(p)⌉
- 3. Baby-step: $g_i \leftarrow g^i$ for $0 \le i < \lceil sqrt(p) \rceil$
- 4. Giant-step: $h_i \leftarrow h^*g^{-j \lceil sqrt(p) \rceil}$, for $0 \le j < \lceil sqrt(p) \rceil$
- 5. Try to find a batch between baby-step and giant-step

Overall time and space O(Sqrt(p))

• Note: the subgroup of order 101 in F_{607} , generated by g=64

i		i	64 ⁱ (mod 607)
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288
5	100	-	

	Giant-ste	ep:	h _j ←h	*g ^{-j}	ſsqrt(p)1	^{1*j} (mod 607)
Restaur	g = 64 Γsqrt(p)⊺	= 1	0	0		
	:	3		9		
		4		10		
	ł	5		-		

i		i	64 ⁱ (mod 607)
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288
5	100	-	

	Collision?	j		j	182* 64 ^{-11*j} (mod 607)
		0	182	6	60
		1	143	7	394
		2	69	8	483
		3	271	9	76
		4	343	10	580
		5	573	-	

i		i	64 ⁱ (mod 607)	
0	1	6	330	
1	64	7	482	4
2	454	8	498	I
3	527	9	308	
4	343	10	288	•
5	100	-		

	j		j	182* 64 ^{-11*j} (mod 607)
	0	182	6	60
	1	143	7	394
Collision?	2	69	8	483
	3	271	9	76
	4	343	10	580
	5	573	-	

CS489 Winter 2023

CS489 Winter 2023

The value x

Q: Consider, $h = g^x$ and that x has been chosen such that the base-2 representation has few non-zeros.

The value x

Q: Consider, $h = g^x$ and $x \in Z_{31}^*$ has been chosen such that the base-2 representation has few non-zeros. Let g = 3 and h = 11. Each Y_b is length five with 2 bits of value 1.

Recall,	Giant-Step		Baby-Step	
Giant: g _i ← g ⁱ	Y ₁		Y ₂	
·	00011	g ^{val(00011)}		$h \cdot g^{-val(00011)}$
Baby: h _i ←h*g ^{-j [sqrt(31)]}	00110	g ^{val(00110)}		$h \cdot g^{-val(10010)}$
	00101	g ^{val(00101)}	00101	$h \cdot g^{-val(00101)}$
	:	:	:	:
	10010	g ^{val(10010)}		$h \cdot g^{-val(10010)}$
	10001	g ^{val(10001)}	10001	$h \cdot g^{-val(10001)}$

The value x

Act.

Q: Consider, $h = g^x$ and $x \in Z_{31}^*$ has been chosen such that the base-2 representation has few non-zeros. Let g = 3 and h = 11. Each Y_b is length five with 2 bits of value 1.

Recall, Giant: **g**_i ← **g**ⁱ Baby: h_i ←h*g^{-j [sqrt(31)]}

Submit a match and four other rows.

CS489 Winter 2023

FAQ: Groups/Math Definitions

A Group:

- A set with an operation on its elements which
 - Is closed
 - Has an identity
 - $\circ~$ Is associative, and
 - Every element has an inverse
- Commutative groups are called **abelian**

Groups with properties

- A cyclic group of prime order cannot be broken down into smaller groups
- Cyclic subgroups are generated by a generator g raised to a series of powers (the group consists of all its integer powers)

• If p|a, then every power of *a* is divisible *p*.

• If p|a, then every power of a is divisible p. So we can skip it.

- If p|a, then every power of a is divisible p. So we can skip it.
- So what about when p doesn't divide a?
- a, 2a, 3a, ..., (p-1)a reduced modulo p

...p-1 numbers in the list...we claim they are all different.

- If p|a, then every power of a is divisible p. So we can skip it.
- So what about when p doesn't divide a?
- a, 2a, 3a, ..., (p-1)a reduced modulo p

...p-1 numbers in the list...we claim they are all different.

- If p|a, then every power of a is divisible p. So we can skip it.
- So what about when p doesn't divide a?
- a, 2a, 3a, ..., (p-1)a reduced modulo p

...p-1 numbers in the list...we claim they are all different.

- When *p* doesn't divide *a*?
- a, 2a, 3a, ..., (p-1)a reduced modulo p
- Consider *ja* mod p and *ka* mod p

1) Suppose they are the same

- When *p* doesn't divide *a*?
- a, 2a, 3a, ..., (p-1)a reduced modulo p

1)

Suppose they

are the same

- Consider *ja* mod p and *ka* mod p
- Then, $ja \equiv ka \pmod{p}$, and, $(j-k)a \equiv 0 \pmod{p}$

- When *p* doesn't divide *a*?
- a, 2a, 3a, ..., (p-1)a reduced modulo p
- Consider *ja* mod p and *ka* mod p
- Then, $ja \equiv ka \pmod{p}$, and, $(j-k)a \equiv 0 \pmod{p}$

2) Thus p|(j-k)a

1)

Suppose they

are the same

- When *p* doesn't divide *a*?
- a, 2a, 3a, ..., (p-1)a reduced modulo p
- Consider *ja* mod p and *ka* mod p
- Then, *ja*≡*ka* (mod p), and, (j-k)a≡0 (mod p)
- Etc...

Suppose they

are the same

1)

2) Thus p|(j-k)a