CS489/689 Privacy, Cryptography, Network and Data Security

Winter 2023, Tuesday/Thursday 8:30-9:50am

Today

- Recap: security games
- El gamal cryptosystem
- El gamal signatures
- El gamal security
- Crash course mathematics: spliced in some terminology/concepts

What on earth are groups...

Groups - Basically a set with specific properties

Def: A group is a set with an operation on its elements which:

- Is closed
- Has an identity
- Is associative,
- And every element has an inverse

Closed - With Addition as the operation For every a,b in Z/NZ: a+b in Z/NZ

Aka:

The sum of two group elements is an element in the group.

Has an Identity: With Addition as the operation E.g., a+0 = a

Has an element e such that any element plus e outputs the element (itself)

Is Associative: With Addition as the operation (a+b)+c = a + (b+c)

Every element has an inverse

Integers, additive inverse of a is -a

a + (-a) = (-a) +a = 0

Abelian Groups

Def: Abelian groups are groups which are commutative.

The property: applying the group operation to two group elements does not depend on the order in which they are written.

E.g. a+b = b+a

**really useful in crypto, and is why we almost always use them CS489 Winter 2023

Decisional Diffie-Hellman

Crash Course: Decision Diffie-Hellman Problem

The adversary is given $g \in G$, $a=g^x$, $b=g^y$, and $c=g^z$, for unknowns x, y, and z.

Crash Course: Decision Diffie-Hellman Problem

The adversary is given $g \in G$, $a=g^x$, $b=g^y$, and $c=g^z$, for unknowns x, y, and z.

- Challenger chooses z s.t. z=x*y (with $pr=\frac{1}{2}$) or z is random \bigotimes
- **Goal** of adversary is to determine whether:

z=x*y OR random z

Crash Course: Decision Diffie-Hellman Problem

The adversary is given $g \in G$, $a=g^x$, $b=g^y$, and $c=g^z$, for unknowns x, y, and z.

- Challenger chooses z s.t. z=x*y (with $pr=\frac{1}{2}$) or z is random $\frac{99}{2}$
- **Goal** of adversary is to determine whether:

z=x*y

random z

 $Adv_{G}^{DDH}(A) = 2*|Pr[A wins the DDH game in G]-\frac{1}{2}|.$

CS489 Winter 2023

DDH Security Game b ←{0,1} $\textbf{g} \leftarrow \textbf{G}$ x,y *←* **Z**/q**Z** If b=0 then $z \leftarrow Z/qZ$ If b=1 then $z \leftarrow x^*y$ **O** Α

DDH Security Game b ←{0,1} $\mathbf{g} \leftarrow \mathbf{G}$ $x,y \leftarrow Z/qZ$ If b=0 then $z \leftarrow Z/qZ$ Α If b=1 then $z \leftarrow x^*y$ $a \leftarrow g^x$, $b \leftarrow g^y$, $c \leftarrow g^z$

CS489 Winter 2023

El Gamal

ElGamal Public Key Cryptosystem

- Let p be a prime such that the DLP in (\mathbf{Z}_{n}^{*}) is infeasible
- Let α ∈ Z^{*}_p be a primitive element
 Let P = Z^{*}_p, C = Z^{*}_p x Z^{*}_p and...
- $\mathcal{K} = \{ (p, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p} \}$

• For a secret random number k in \mathbf{Z}_{p-1} define:

• $e_k(x,k) = (y_1, y_2)$, where $y_1 = \alpha^k \mod p$ and $y_2 = x\beta^k \mod p$

• For y_1, y_2 in Z_p^* , define $d_K(y_1, y_2) = y_2(y_1^a)^{-1} \mod p$

ElGamal: The Keys

- 1. Bob picks a "large" prime p and a primitive root α .
 - a. Assume message m is an integer 0 < m < p
- 2. Bob picks secret integer a
- 3. Bob Computes $\beta \equiv \alpha^a \pmod{p}$

ElGamal: The Keys

- 1. Bob picks a "large" prime p and a primitive root α .
 - a. Assume message m is an integer 0 < m < o
- 2. Bob picks secret integer a
- 3. Bob Computes $\beta \equiv \alpha^a \pmod{p}$
- 4. Bob's public key is (p, α, β)

ElGamal: The Keys

- 1. Bob picks a "large" prime p and a primitive root α .
 - a. Assume message m is an integer 0 < m < o
- 2. Bob picks secret integer a
- 3. Bob Computes $\beta \equiv \alpha^a \pmod{p}$
- 4. Bob's public key is (p, α, β)
- 5. Bob's private key is a

ENG	I choose secret integer k
	Compute $y_1 \equiv \alpha^k \pmod{p}$

ElGamal: Decryption

ElGamal: Decryption

CS489 Winter 2023

ElGamal Informal Summary

• The plaintext m is "hidden" by multiplying it by β^k to get y_2

CS489 Winter 2023

ElGamal Informal Summary

- The plaintext m is "hidden" by multiplying it by β^k to get y_2
- The ciphertext includes α^k so that Bob can compute β^k from α^k (because Bob knows a)

ElGamal Informal Summary

- The plaintext x is "hidden" by multiplying it by β^k to get y₂
- The ciphertext includes α^k so that Bob can compute β^k from α^k (because Bob knows a)
- Thus, Bob can "reveal" m by dividing y_2 by β^k

Example: How ElGamal works

Example: How El Gamal works

- Set p=2579 and α = 2 (α is a primitive element modulo p) and let a =765, then
- $\beta = 2^{765} \mod 2579 = 949$

Example: How El Gamal works

- Set p=2579 and $\alpha = 2$ (α is a primitive element modulo p) and let a =765, then
- $\beta = 2^{765} \mod 2579 = 949$

I want to send m=1299 to Bob. I choose k = 853 for my random integer

Example: How El Gamal works

- Set p=2579 and $\alpha = 2$ (α is a primitive element modulo p) and let a =765, then
- $\beta = 2^{765} \mod 2579 = 949$

I want to send m=1299 to Bob. I choose k = 853 for my random integer

Time for more computation

Example: How El Gamal works

- Set p=2579 and $\alpha = 2$ (α is a primitive element modulo p) and let a =765, then
- $\beta = 2^{765} \mod 2579 = 949$

I want to send m=1299 to Bob. I choose k = 853 for my random integer

Time for more computation

- $y_1 = 2^{853} \mod 2579 = 435$, and
- $y_2 = 1299 \times 949^{853} \mod 2579 = 2396$

Example: How ElGamal works

- Ok, we have y_1 and y_2
- y₁ = 2⁸⁵³ mod 2579 = 435, and
 y₂=1299*949⁸⁵³ mod 2579 = 2396

Example: How ElGamal works

- $y_1 = 2^{853} \mod 2579 = 435$, and $y_2 = 1299 \times 949^{853} \mod 2579 = 2396$

Time for more computation

• $m=2396*(435^{765})^{-1} \mod 2579 = 1299$

Example: How ElGamal works

- $y_1 = 2^{853} \mod 2579 = 435$, and $y_2 = 1299 * 949^{853} \mod 2579 = 2396$

Time for more computation

• $m=2396*(435^{765})^{-1} \mod 2759 = 1299$

ElGamal...Encrypt. "Small" Calculation Day

- (p, α, β) = (809, 256, 498)
- a = 68
- k = 89
- m=100

Determine $c = y_1, y_2$.

Submit c and a short description of your computation.

Security of El Gamal

El-Gamal_{SIM}Relies on DDH

Given g, g^a, g^b distinguish a random r and g^{ab}

Known computationally hard problem

Short Answer?

- Let p be a prime such that the DLP in (\mathbf{Z}_{p}^{*}) is infeasible
- Let $\alpha \in \mathbf{Z}_{n}^{*}$ be a primitive element
- Let $P = \mathbf{Z}_{p}^{*} \mathcal{C} = \mathbf{Z}_{p}^{*} \times \mathbf{Z}_{p}^{*}$ and...
- $\mathcal{K} = \{(p, \alpha, a, \beta): \beta \equiv \alpha^a \pmod{p}\}$
- For a secret random number k in \mathbf{Z}_{p-1} define:

• $e_{k}(x,k) = (y_{1}, y_{2})$, where $y_{1} = \alpha^{k} \mod p$ and $y_{2} = x\beta^{k} \mod p$

• For y_1, y_2 in \mathbf{Z}_{*}^* , define $d_{V}(y_1, y_2) = y_2(y_1^a) - 1 \mod p$

Clearly insecure if: Adversary can compute $a = \log_{\alpha}\beta$, then could decrypt the same as Bob.

Short Answer?

- Let p be a prime such that the DLP in (\mathbf{Z}_{p}^{*}) is infeasible
- Let $\alpha \in \mathbf{Z}_n^*$ be a primitive element

• Let
$$P = \mathbf{Z}_{p}^{*} \mathcal{C} = \mathbf{Z}_{p}^{*} \times \mathbf{Z}_{p}^{*}$$
 and...

Necessary condition for security: DLP in Z_{p}^{*} is infeasible

• $e_{K}(x,k) = (y_{1}, y_{2})$, where $y_{1} = \alpha^{\kappa} \mod p$ and $y_{2} = x\beta^{\kappa} \mod p$ For y_{1}, y_{2} in \mathbf{Z}_{n}^{*} , define $d_{\kappa}(y_{1}, y_{2}) = y_{2}(y_{1}^{a}) - 1 \mod p$

Clearly insecure if: Adversary can compute $a = log_{\alpha}\beta$, then could decrypt the same as Bob.

Recall: IND-CPA

IND-CPA secure: if a polynomial time adversary choosing two <u>plaintexts</u> cannot distinguish between the resulting <u>ciphertexts</u>.

Proving IND-CPA Using Simulators

- The simulator is given an arbitrary instance of a known to be hard problem
- The simulator interacts with the attacker
- The simulator solves the hard problem, if the attacker is successful.

Think of the security games earlier.

S receives arbitrary instance
 of known to be hard
 problem
 Simulator
 Simulator
 Attacker
 Phase 1

• S receives arbitrary instanceProblem Simulator Attacker Random Instance of known to be hard Phase 1 problem S interacts with the attacker Challenge Phase 2 Guess Solution

- S receives arbitrary instance
 S receives a
- S interacts with the attacker
- S solves the hard problem, if the attacker is successful

The system is at least as "secure" as the problem is hard.

Recall from earlier: DDH Security Game

Attacker wins if b=b'

ElGamal Simulator IND-CP

 M_0 and M_1 of equal length -

ElGamal Simulator IND-CP

ElGamal Simulator IND-CP

Network Security - Next week

Answer to activity...

• Ciphertext: $y_1 = 468$, $y_2 = 494$

Short Answer? Let p be a prime such that the D easible a: must be secret, and must not be repeated • Let $\alpha \in \mathbf{Z}_{n}^{*}$ be a primitive • Let $P = \mathbf{Z}_{\mu}$ (0)DLP m_____* is infeasible Necese $e_{K}(x,k) = (y_{2}), where y_{1}$ mod p and $y_2 = x\beta^{\kappa} \mod p$ For y_1 , y_2 in \mathbf{Z}_2^* , define $d_{\mu}(y_1, y_2) = y_2(y_1^a) - 1 \mod p_2$ **Clearly insecure if:** Adversary can compute $a = \log_{\alpha}\beta$, then could decrypt the same as Bob.

Repeating Private "a" in ElGamal

- If Eve learns m_a, then she can learn m_b
- Eve computes:

$$-\mathbf{y}_{2a}/\mathbf{m}_{a} \equiv \beta^{k} \equiv y_{2b}/m_{b} \pmod{p} = m_{b} \equiv (\mathbf{y}_{2b}\mathbf{m}_{a})/\mathbf{y}_{2a}$$

What if i reuse a for two messages m_a and m_b