CS489/689

Privacy, Cryptography, Network and Data Security

Today

- Recap: security games
- El gamal cryptosystem
- El gamal signatures
- El gamal security
- Crash course mathematics: spliced in some terminology/concepts

What on earth are groups...

Groups - Basically a set with specific properties

Def: A group is a set with an operation on its elements which:

- Is closed
- Has an identity
- Is associative,
- And every element has an inverse

Closed - With Addition as the operation

For every a, b in \mathbf{Z} / NZ : $\mathrm{a}+\mathrm{b}$ in $\mathbf{Z / N Z}$

Aka:

The sum of two group elements is an element in the group.

Has an Identity: With Addition as the operation

E.g., a+0 = a

Has an element e such that any element plus e outputs the element (itself)

Is Associative: With Addition as the operation $(a+b)+c=a+(b+c)$

Every element has an inverse

Integers, additive inverse of a is -a

$$
a+(-a)=(-a)+a=0
$$

Abelian Groups

Def: Abelian groups are groups which are commutative.

The property: applying the group operation to two group elements does not depend on the order in which they are written.
E.g. $a+b=b+a$
**really useful in crypto, and is why we almost always use them

Decisional Diffie-Hellman

Crash Course: Decision Diffie-Hellman Problem

The adversary is given $\mathrm{g} \in \mathrm{G}, \mathrm{a}=\mathrm{g}^{\mathrm{x}}, \mathrm{b}=\mathrm{g}^{\mathrm{y}}$, and $\mathrm{c}=\mathrm{g}^{\mathrm{z}}$, for unknowns x, y, and z .

Crash Course: Decision Diffie-Hellman Problem

The adversary is given $\mathrm{g} \in \mathrm{G}, \mathrm{a}=\mathrm{g}^{\mathrm{x}}, \mathrm{b}=\mathrm{g}^{\mathrm{y}}$, and $\mathrm{c}=\mathrm{g}^{\mathrm{z}}$, for unknowns x, y, and z .

- Challenger chooses z s.t. $z=x^{*} y$ (with $p r=1 / 2$) or z is random 造
- Goal of adversary is to determine whether:

$$
z=x * y \quad \text { OR } \quad \text { random } z
$$

Crash Course: Decision Diffie-Hellman Problem

The adversary is given $\mathrm{g} \in \mathrm{G}, \mathrm{a}=\mathrm{g}^{\mathrm{x}}, \mathrm{b}=\mathrm{g}^{\mathrm{y}}$, and $\mathrm{c}=\mathrm{g}^{\mathrm{z}}$, for unknowns x, y, and z .

- Challenger chooses z s.t. $z=x^{*} y$ (with $p r=1 / 2$) or z is random
- Goal of adversary is to determine whether:

$$
z=x \star y
$$

random z

Adv $_{G}{ }^{\mathrm{DHH}}(\mathbf{A})=2 * \mid \operatorname{Pr}[\mathrm{A} \text { wins the DDH game in } \mathrm{G}]^{-1 / 2} \mid$.

DDH Security Game

$\mathrm{b} \leftarrow\{0,1\}$
$\mathrm{g} \leftarrow \mathrm{G}$

DDH Security Game

$\mathrm{b} \leftarrow\{0,1\}$
$\mathrm{g} \leftarrow \mathrm{G}$
$x, y \leftarrow Z / q Z$ If $\mathrm{b}=0$ then $\mathrm{z} \leftarrow \mathrm{Z} / \mathrm{q} Z$
If $\mathrm{b}=1$ then $\mathrm{z} \leftarrow \mathrm{x}^{\star} \mathrm{y}$

A
00008

DDH Security Game

$\mathrm{b} \leftarrow\{0,1\}$
$\mathrm{g} \leftarrow \mathrm{G}$
$\mathrm{x}, \mathrm{y} \leftarrow \mathrm{Z} / \mathrm{qZ}$
If $\mathrm{b}=0$ then $\mathrm{z} \leftarrow \mathrm{Z} / \mathrm{q} z$
A
If $\mathrm{b}=1$ then $\mathrm{z} \leftarrow \mathrm{x}^{*} \mathrm{y}$
$\mathrm{a} \leftarrow \mathrm{g}^{\mathrm{x}}, \mathrm{b} \leftarrow \mathrm{g}^{\mathrm{y}}, \mathrm{c} \leftarrow \mathrm{g}^{\mathrm{z}}$

DDH Security Game

$\mathrm{b} \leftarrow\{0,1\}$
$\mathrm{g} \leftarrow \mathrm{G}$
$x, y \leftarrow Z / q Z$
If $\mathrm{b}=0$ then $\mathrm{z} \leftarrow Z / q z$
If $\mathrm{b}=1$ then $\mathrm{z} \leftarrow \mathrm{x}^{\star} \mathrm{y}$
$a \leftarrow g^{x}, b \leftarrow g^{y}, c \leftarrow g^{2}$
b'
Win if $b^{\prime}=b$
$\mathbf{A d v}_{\mathrm{G}}{ }^{\mathrm{DDH}}(\mathbf{A})=2 * \mid \operatorname{Pr}[\mathrm{A}$ wins the DDH game in G$]-1 / 2 \mid$.

El Gamal

ElGamal Public Key Cryptosystem

- Let p be a prime such that the DLP in $\left(\mathbf{Z}_{p}{ }^{*}.\right)$ is infeasible
- Let $a \in \mathbf{Z}_{\mathrm{p}}{ }^{*}$ be a primitive element
- Let $P=\mathbf{Z}_{\mathrm{p}}{ }^{*}, C=\mathbf{Z}_{\mathrm{p}}{ }^{*} \times \mathbf{Z}_{\mathrm{p}}{ }^{*}$ and...
- $K=\left\{(p, a, a, \beta): \beta \equiv a^{a}(\bmod p)\right\}$

- For a secret random number k in $\mathbf{Z}_{\mathrm{p}-1}$ define:
- $e_{k}(x, k)=\left(y_{1}, y_{2}\right)$, where $y_{1}=a^{k} \bmod p$ and $y_{2}=x \beta^{k} \bmod p$
- For y_{1}, y_{2} in $Z_{p}{ }^{*}$, define $d_{k}\left(y_{1}, y_{2}\right)=y_{2}\left(y_{1}{ }^{\text {a }}\right)^{-1} \bmod p$

ElGamal: The Keys

1. Bob picks a "large" prime p and a primitive root a.
a. Assume message m is an integer $0<m<p$
2. Bob picks secret integer a
3. Bob Computes $\beta \equiv \alpha^{a}(\bmod p)$

ElGamal: The Keys

1. Bob picks a "large" prime p and a primitive root a.
a. Assume message m is an integer $0<m<0$
2. Bob picks secret integer a
3. Bob Computes $\beta \equiv \alpha^{a}(\bmod p)$
4. Bob's public key is (p, a, β) (ar

ElGamal: The Keys

1. Bob picks a "large" prime p and a primitive root a.
a. Assume message m is an integer $0<m<0$
2. Bob picks secret integer a
3. Bob Computes $\beta \equiv \alpha^{a}(\bmod p)$

4. Bob's public key is (p, a, β) (ar)
5. Bob's private key is a

ElGamal: Encryption

I choose secret integer k

EIGamal: Encryption

ElGamal: Encryption

ElGamal: Encryption

ElGamal: Encryption

ElGamal: Decryption

ElGamal: Decryption

I choose secret integer \mathbf{k}

Compute $y_{1} \equiv a^{k}(\bmod p)$

Compute $y_{2} \equiv \beta^{\mathrm{k}} \mathrm{m}(\bmod \mathrm{p})$
Send y_{1} and y_{2} to Bob
Compute $y_{2} y_{1}{ }^{-a} \equiv \mathrm{~m}(\bmod \mathrm{p})$
This works because: $y_{2} y_{1}{ }^{-\mathrm{a}} \equiv \beta^{\mathrm{k}} \mathrm{m}\left(\mathrm{a}^{\mathrm{k}}\right)^{-\mathrm{a}} \equiv \mathrm{m}(\bmod \mathrm{p})$

ElGamal Informal Summary

- The plaintext m is "hidden" by multiplying it by β^{k} to get y_{2}

ElGamal Informal Summary

- The plaintext m is "hidden" by multiplying it by β^{k} to get y_{2}
- The ciphertext includes a^{k} so that Bob can compute β^{k} from a^{k} (because Bob knows a)

I receive ct $=\left(y_{1}, y_{2}\right)$

ElGamal Informal Summary

- The plaintext x is "hidden" by multiplying it by β^{k} to get y_{2}
- The ciphertext includes a^{k} so that Bob can compute β^{k} from a^{k} (because Bob knows a)
- Thus, Bob can "reveal" m by dividing y_{2} by β^{k}

$$
\mid \text { receive ct }=\left(y_{1}, y_{2}\right)
$$

Example: How ElGamal works

Example: How El Gamal works

- Set $p=2579$ and $a=2$ (α is a primitive element modulo p) and let $a=765$, then
$\beta=2^{765} \bmod 2579=949$

Example: How El Gamal works

- Set $p=2579$ and $a=2$ (α is a primitive element modulo p) and let a $=765$, then $\beta=2^{765} \bmod 2579=949$

I want to send m=1299 to Bob. I choose $k=853$ for $m y$ random integer

Example: How El Gamal works

- Set $p=2579$ and $a=2$ (a is a primitive element modulo p) and let $a=765$, then $\beta=2^{765} \bmod 2579=949$

I want to send $m=1299$ to Bob. I choose $k=853$ for $m y$ random integer

Time for more computation

Example: How El Gamal works

- Set $p=2579$ and $a=2$ (α is a primitive element modulo p) and let a $=765$, then
- $\beta=2^{765} \bmod 2579=949 \quad \begin{aligned} & \text { I want to send } m=1299 \text { to Bob. I } \\ & \text { choose } k=853 \text { for my random integer }\end{aligned}$

Time for more computation

- $\mathrm{y}_{1}=2^{853} \bmod 2579=435$, and
- $y_{2}=1299 * 949^{853} \bmod 2579=2396$

Example: How ElGamal works

- Ok, we have y_{1} and y_{2}
- $y_{1}=2^{853} \bmod 2579=435$, and
- $y_{2}=1299 * 949^{853} \bmod 2579=2396$

Example: How ElGamal works

- $y_{1}=2^{853} \bmod 2579=435$, and
- $y_{2}=1299 * 949^{853} \bmod 2579=2396$

I receive ct = $\mathrm{y}=(435,2396)$
Time for more computation

- $m=2396 *\left(435^{765}\right)^{-1} \bmod 2579=1299$

Example: How ElGamal works

- $\mathrm{y}_{1}=2^{853} \bmod 2579=435$, and
- $y_{2}=1299 * 949^{853} \bmod 2579=2396$

Time for more computation

- $m=2396 *\left(435^{765}\right)^{-1} \bmod 2759=1299$

> Nice! That's the plaintext I wanted to send to Bob.

ElGamal...Encrypt. "Small" Calculation Day

- $(p, a, \beta)=(809,256,498)$
- $a=68$
- $\mathrm{k}=89$
- m=100

Determine $\mathrm{c}=\mathrm{y}_{1}, \mathrm{y}_{2}$.
Submit c and a short description of your computation.

Security of El Gamal

El-Gamal ${ }_{\text {SIM }}$ Relies on DDH

Given $\mathrm{g}, \mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}$ distinguish a random r and g^{ab}

Known computationally hard problem

Short Answer?

- Let p be a prime such that the DLP in $\left(\mathbf{Z}_{\mathrm{p}}^{*} \cdot\right)$ is infeasible
- Let $\alpha \in \mathbf{Z}_{\mathrm{p}}{ }^{*}$ be a primitive element
- Let $P=\mathbf{Z}_{\mathrm{p}}{ }^{*}, C=\mathbf{Z}_{\mathrm{p}}{ }^{*} \times \mathbf{Z}_{\mathrm{p}}{ }^{*}$ and...
- $K=\left\{(p, a, a, \beta): \beta \equiv a^{a}(\bmod p)\right\}$
- For a secret random number k in $\mathbf{Z}_{\mathrm{p}-1}$ define:
- $e_{k}(x, k)=\left(y_{1}, y_{2}\right)$, where $y_{1}=a^{k} \bmod p$ and $y_{2}=x \beta^{k} \bmod p$ For $y_{11} v_{n}$ in $Z_{n}{ }^{*}$, define $d_{1}\left(y_{1}, y_{n}\right)=y_{n}\left(y_{1}{ }^{a}\right)-1 \bmod p$
Clearly insecure if: Adversary can compute $a=\log _{a} \beta$, then could decrypt the same as Bob.

Short Answer?

- Let p be a prime such that the DLP in $\left(\mathbf{Z}_{\mathrm{p}}^{*} \cdot\right)$ is infeasible
- Let $a \in \mathbf{Z}_{\mathrm{p}}{ }^{*}$ be a primitive element
- Let $P=\mathbf{Z}_{\mathrm{p}}{ }^{*}, C=\mathbf{Z}_{\mathrm{p}}{ }^{*} \times \mathbf{Z}_{\mathrm{p}}{ }^{*}$ and...

Necessary condition for security: DLP in Z_{p} * is infeasible
o $e_{k}(x, k)=\left(y_{1}, y_{2}\right)$, where $y_{1}=a^{k}$ mod p and $y_{2}=x \beta^{k} \bmod p$ For y_{1}, y_{n} in $Z_{n}{ }^{*}$, define $d_{1}\left(y_{1}, y_{n}\right)=y_{n}\left(y_{1}{ }^{a}\right)-1 \bmod p$
Clearly insecure if: Adversary can compute $a=\log _{a} \beta$, then could decrypt the same as Bob.

Recall: IND-CPA

IND-CPA secure: if a polynomial time adversary choosing two plaintexts cannot distinguish between the resulting ciphertexts.

Proving IND-CPA Using Simulators

- The simulator is given an arbitrary instance of a known to be hard problem
- The simulator interacts with the attacker
- The simulator solves the hard problem, if the attacker is successful.

Think of the security games earlier.

Simulator Proofs...Wait What?

Simulator Proofs...Wait What?

- S receives arbitrary instaraeProblem Simulator

Simulator Proofs...Wait What?

- S receives arbitrary instaraeProblem Simulator Attacker of known to be hard problem
- S interacts with the attacker

Simulator Proofs...Wait What?

- S receives arbitrary instaraeProblem Simulator Attacker of known to be hard problem
- S interacts with the attacker
- S solves the hard problem, if the attacker is successful

Random Instance	
	Phase 1
	Challenge

Simulator Proofs...Wait What?

- S receives arbitrary instaraeProblem Simulator

Attacker of known to be hard problem

- S interacts with the attacker
- S solves the hard problem, if the attacker is successful

Random Instance,	
	Phase 1
	Challenge
	Phase 2
	Guess

The system is at least as "secure" as the problem is hard.

Recall from earlier: DDH Security Game

$\mathrm{b} \leftarrow\{0,1\}$
$\mathrm{g} \leftarrow \mathrm{G}$
$x, y \leftarrow Z / q Z$
If $b=0$ then $z \leftarrow Z / q Z$
If $\mathrm{b}=1$ then $\mathrm{z} \leftarrow \mathrm{x}^{\star} \mathrm{y}$
$a \leftarrow g^{x}, b \leftarrow g^{y}, c \leftarrow g^{2}$
b^{\prime}
Win if $b^{\prime}=b$
$\mathbf{A d v}_{\mathrm{G}}{ }^{\mathrm{DDH}}(\mathbf{A})=2 \star \mid \operatorname{Pr}[\mathrm{A} \text { wins the } \mathrm{DDH} \text { game in } \mathrm{G}]^{-1 / 2} \mid$.

El Gamal IND-CPA Game

$\mathrm{b} \leftarrow\{0,1\}$, and random $\left(\mathrm{K}, \mathrm{K}^{-1}\right)$
K

A

El Gamal IND-CPA Game

$\mathrm{b} \leftarrow\{0,1\}$, and random $\left(\mathrm{K}, \mathrm{K}^{-1}\right)$
K
M_{0} and M_{1} of equal length

A

El Gama IND-CPA Game

$\mathrm{b} \leftarrow\{0,1\}$, and random $\left(\mathrm{K}, \mathrm{K}^{-1}\right)$
K
M_{0} and M_{1} of equal length 0.

$$
\mathrm{C}=\mathrm{E}_{\mathrm{k}}\left[\mathrm{M}_{\mathrm{b}}\right]
$$

A

El Gamal IND-CPA Game

$\mathrm{b} \leftarrow\{0,1\}$, and random $\left(\mathrm{K}, \mathrm{K}^{-1}\right)$
K
M_{0} and M_{1} of equal length
0

$$
\mathrm{C}=\mathrm{E}_{\mathrm{k}}\left[\mathrm{M}_{\mathrm{b}}\right]
$$

A

$$
b^{\prime} \in\{0,1\}
$$

Attacker wins if $b=b^{\prime}$

ElGamal Simulator IND-CP

M_{0} and M_{1} of equal length

A

EIGamal Simulator IND-CP

M_{0} and M_{1} of equal length

Set random r and $\mathrm{b} \longleftarrow\{0,1\}$
Computed c_{b}

A

ElGamal Simulator IND-CP

资 $\mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{c}}, \mathrm{g}^{\mathrm{d}}$, and r
M_{0} and M_{1} of equal length
Set random r and $\mathrm{b} \leftarrow\{0,1\}$
Computed c_{b}
A

Guess b' for which M encrypted Attacker wins if $b=b^{\prime}$, Output: $r=g^{a c}$

Network Security - Next week

Answer to activity...

- Ciphertext: $y_{1}=468, y_{2}=494$

Short Answer?

- Let p be a prime such that the DI
- Let $\mathrm{a} \in \mathbf{Z}_{\mathrm{p}}{ }^{*}$ be a primitive
- Let $P=\mathbf{Z}_{\mathrm{p}}$
mut be secret, and
Necese......ated must not be repeale
DLP IIn-p* is infeasible
- $e_{k}(x, k)=(y, s)_{2}, w h, y_{1}=\bmod p$ and $y_{2}=x \beta^{k} \bmod p$
- For $y_{11} y_{n}$ in Z_{0}^{*}, define $d_{1}\left(y_{1}, y_{n}\right)=y_{0}\left(y_{1}{ }^{a}\right)-1 \bmod p$

Clearly insecure if: Adversary can compute $a=\log _{a} \beta$, then could decrypt the same as Bob.

Repeating Private "a" in ElGamal

- Then the ciphertexts are $\left(\mathrm{y}_{1}, \mathrm{y}_{2 \mathrm{a}}\right)$ and $\left(\mathrm{y}_{1}, \mathrm{y}_{2 b}\right)$
- If Eve learns $\mathrm{m}_{\mathrm{a}^{\prime}}$ then she can learn m_{b}
- Eve computes:

$$
-y_{2 a} / m_{a} \equiv \beta^{k} \equiv y_{2 b} / m_{b}(\bmod p)=>m_{b} \equiv\left(y_{2 b} m_{a}\right) / y_{2 a}
$$

