CS489/689 Privacy, Cryptography, Network and Data Security

Authentication Protocols

A2 is out!

- Written Q1,2,5 after today
 - $\circ \qquad Q3 \ by \ Feb \ 14^{th} \ Q5 \ by \ Feb \ 16^{th}$
- Programming Q1 and Q3 already
 - Q2 and Q4 by Feb 9th
- Office hours Mondays 12:30 DC3333

Grad Student Projects

- Proposals Due <u>Feb 27th (not Feb 21st)</u>
- Come talk to us during office hours or make an appointment.

Exam Schedule is out!

- Wednesday April 19th at 7:30PM 10PM
- Location TBA

Today's Lecture – Authentication Protocols

• Symmetric Authentication

- Needham-Schroeder
- Kerberos

• Asymmetric Authentication (PKI)

- **DH**
- Certificates
- PAKEs
- Single Sign On
 - SAML
 - OAuth
- DNSSEC

Recall, Definition of Authentication

Recall, Types of Authentication Tokens

- Something you know
 - Passwords, pins, etc
- Something you have
 - Mobile phones (SMS), RSA tokens, etc.
- Something you are
 - Fingerprints, retinal scans, etc.
- (Experimental) Something you do
 - Keystroke metrics, behavioral patterns, etc.

Today's Focus

• Establishing Keys:

- Typically, once authenticated, we give access to some service or message
- Goal will typically be to establish a symmetric key between parties

Symmetric Crypto Authentication

Needham-Schroeder Overview

- Alice (A) wants to initiate communication with Bob (B)
- A Trusted Third Party (C) with pre established symmetric keys
- K_{AC} is a symmetric key known only to A and the Key Distribution Center (C)
 K_{BC} is a symmetric key known only to B and C
- GOAL: Generate K_{AB}, a symmetric, generated key used in the session between A and B

K_{BC}

Needham-Schroeder Flow

Breaking Down Needham-Schroeder Part 1

- First message in plain
- N_A is a nonce used to prevent reply attacks against Alice

Breaking Down Needham-Schroeder Part 2

• Simply forward the inner message

Breaking Down Needham-Schroeder Part 3

• Need to verify the keys

Replay Attacks

- We have seen examples in previous lectures.
- Definition:
 - Mallory intercepts a message meant for some other party,
 - They later send this message pretending to be some other party
 - Either delay or replay

• Example

- Hashed password
- Car Unlocking

Question

- Act.
- Needham-Schroeder is vulnerable to replay attacks
- Write an explanation for why this is the case, using the algorithm as justification (one or two sentences)
- Sketch out a solution for how you could solve this issue (one or two sentences)
- Submit the write up to learn

Typical Defenses against replays

- Need to ensure the data is "fresh"
- E.g.
- Using a Nonce
- Timestamps
 - Ensure Synchronization
- Caching Responses

Kerberos

- Based on the Needham-Schroeder protocol
- Fixes the potential for a replay attack vulnerability by adding a timestamp
- Used in Windows Active Directory
- Effective Access Control
 - Each client only needs single key.
 - Each server also only needs a single key.
 - Mutual Authentication.

Kerberos Overview

The Keys

Kerberos Overview

Breaking Down Kerberos – Part 1

- { $K_{BT}|ID_B|L$ } is the ticket granting ticket (TGT)
- L is lifetime, T_A is the timestamp at A, N_B is a nonce

 K_{BA}

Breaking Down Kerberos – Part 2

- { $K_{BT}|ID_B|L$ } is the ticket granting ticket (TGT)
- { $K_{BS}|ID_B|L$ } is the service ticket (ST)
- K_{BT} is a session key between Bob and the TGS

Breaking Down Kerberos – Part 3

- { $K_{BS}|ID_B|L$ } is the service ticket (ST)
- *K_{BS}* is a session key between Bob and the Server

Kerberos Overview

Reflect, why does Kerberos fix it

- Timestamps in previously insecure messages
- All tickets include a Lifetime (time they expire)
- Newer versions also include caches of previous messages
 - Bob: service ticket
 - TGS: User ID and timestamp
 - Service: User ID and timestamp

Kerberos vulnerabilities

- Kerberoasting: try to crack the first message sent.
 - Fix -> pre authenticate the client first
- Forged service authentication ticket (silver ticket):
 - Requires compromising various accounts. Fix -> CVE and better passwords
- Stolen KDC key (golden ticket)
 - Compromise the KDC

Asymmetric Crypto Authentication

Diffie-Hellman key exchange

A public-key protocol published in 1976 by Whitfield Diffie and Martin Hellman

Allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure channel

Key used to encrypt subsequent communications using a symmetric key cipher

Diffie-Hellman key exchange – Visualization

DH as paint!

Diffie-Hellman key exchange – The Math

- Alice chooses prime *p* at random and finds a generator *g*
- Alice chooses $X \leftarrow_{\mathsf{R}} \{2, 3, \dots, p-2\}$ and sends $A = g^{X} \pmod{p}$ to Bob, together with p and g
- Bob chooses $Y \leftarrow_{\mathsf{R}} \{2, 3, \dots, p-2\}$ and sends $B = g^{Y} \pmod{p}$ to Alice
- Alice and Bob both compute $s = g^{XY} \pmod{p}$
 - Alice does that by computing B^{X} (mod p)
 - Bob does that by computing A^{γ} (mod p)
- Now they share a common secret s which can be used to derive a symmetric key

Diffie-Hellman key exchange – Altogether

What's the Problem!

- Authentication!
- Need to verify the public keys!

Recall, Digital Signatures

The Key Management Problem

Q: How can Alice and Bob be sure they're talking to each other?

A: By having each other's verification key!

The Key Management Problem

Q: How can Alice and Bob be sure they're talking to each other?

A: By having each other's verification key!

Q: But how do they get the keys...

The Key Management Problem...Solutions?

Certificate Authorities (CAs)

- A CA is a trusted third party who keeps a directory of people's (and organizations') verification keys
- Alice generates a (s_k^A, v_k^A) key pair, and sends the verification key and personal information, both signed with Alice's signature key, to the CA
- The CA ensures that the personal information and Alice's signature are correct
- The CA generates a certificate consisting of Alice's personal information, as well as her verification key. The entire certificate is signed with the CA's signature key

Certificate Authorities

- Everyone is assumed to have a copy of the CA's verification key (s_k^{CA}), so they can verify the signature on the certificate
- There can be multiple levels of certificate authorities; level n CA issues certificates for level n+1 CAs Public-key infrastructure (PKI)
- Need to have only verification key of root CA to verify the certificate chain

Chain of Certificates

Alice sends Bob the following certificate to prove her identity. Bob can follow the chain of certificates to validate Alice's identity.

Bob has v^{CA1}

CAs on the web

- Root verification key installed on browser
- https://letsencrypt.org changed the game by offering free certificates
- Other common CAs

Rank	Issuer	Usage	Market Share
1	IdenTrust	43.4%	48.9%
2	DigiCert	16.6%	18.7%
3	Sectigo (Comodo Cybersecurity)	13.8%	15.5%
4	Let's Encrypt	7.2%	8.2%
5	GoDaddy	5.4%	6.1%
6	GlobalSign	2.4%	2.7%

Examples

Safari is using an encrypted connection to www.mathsisfun.com.

Encryption with a digital certificate keeps information private as it's sent to or from the https website www.mathsisfun.com.

🛅 Baltimore CyberTrust Root

- L, 🛅 Cloudflare Inc ECC CA-3
 - L, 🛅 sni.cloudflaressl.com

sni.cloudflaressl.com

Issued by: Cloudflare Inc ECC CA-3 Expires: Tuesday, June 13, 2023 at 7:59:59 PM Eastern Daylight Saving Time This certificate is valid

> Trust

\vee Details

 Subject Name

 Country or Region
 US

 State/Province
 California

 Locality
 San Francisco

 Organization
 Cloudflare, Inc.

 Common Name
 sni.cloudflaressl.com

Issuer Name

 Country or Region
 US

 Organization
 Cloudflare, Inc.

 Common Name
 Cloudflare Inc ECC CA-3

Serial Number 0D 62 A9 13 F8 92 16 F7 74 7D 82 56 83 B4 C1 93 Version 3

Signature Algorithm ECDSA Signature with SHA-256 (1.2.840.10045.4.3.2) Parameters None

Not Valid BeforeSunday, June 12, 2022 at 8:00:00 PM Eastern Daylight Saving TimeNot Valid AfterTuesday, June 13, 2023 at 7:59:59 PM Eastern Daylight Saving Time

Public Key Info

Algorithm	Elliptic Curve Public Key (1.2.840.10045.2.1)
Parameters	Elliptic Curve secp256r1 (1.2.840.10045.3.1.7)
Public Key	65 bytes : 04 74 C2 77 87 04 8D BD E0 C7 C8 8B CF 13 B8 F5 18 40 7E 98 1F C2 F7 9E 4A 66 23 5E C8 C8 93 33 75 CC C2 ED 56 1F AB DA 31 D5 5D 1A AB 39 60 9B 2B E9 91 02 62 8C B2 4D 28 F4 91 07 A8 26 01 44 2D
Key Size Key Usage	256 bits Encrypt, Verify, Derive

Signature 70 bytes : 30 44 02 20 7A 62 4A 32 ...

A Note on PAKEs

How do we authenticate passwords?

- Typically send password in plain over a secure channel (TLS)
- Server's store only hash's (with salt)
 - Will see the password at least briefly
- We are good at crypto, can it help?

Password-authenticated key exchange (PAKE)

- A special form of cryptographic key exchange protocol introduced by Bellovin and Merritt
- Designed to help two parties (Bob and Alice) agree on a shared encryption key using a password
 - Balanced: Both parties have password
 - Augmented: Only client (server does not)
- Problem: Hard to get it right!

Goals of PAKEs

- The secret keys will match if the passwords match, and appear random otherwise.
- Participants do not need to trust third parties (in particular, no Public Key Infrastructure)
- The resulting secret key is not learned by anyone not participating in the protocol including those who know the password.
- The protocol does not reveal either parties' password to each other (unless the passwords match), or to eavesdroppers.

Attacks on PAKEs

- Off-line dictionary attack
- On-line dictionary attacks
- Replay attacks
- Implementation Issues
- Entropy!?

Example: SRP

- Early widely deployed PAKEs
 - Apple iCloud!
- Poor security proof
 - On V6a (keeps getting broken)
- Vulnerable to offline dictionary attacks

Example: OPAQUE

- Proposed in 2018
- Has much stronger security proof
- Uses OPRFs to avoid leaking the salt to attacker
- Efficient, works for any hash of passwords on the server
- https://eprint.iacr.org/2018/163.pdf

Example: SPAKE2

Key Management - SSO

Security Assertion Markup Language (SAML)

- Uses secure tokens (encrypted, digitally signed XMLcertificates) instead of credentials
- Allows users to access multiple applications with trusted information with a single log in single sign-on (SSO)
- Can use whatever authentication protocol you choose
- Primarily a standard for how these communications are formatted

Security Assertion Markup Language (SAML)

Security Assertion Markup Language (SAML)

• Advantages:

- Authentication is centralized
- Loose coupling of directories
- User errors such as forgotten, weak or leaked password are avoided
- Improves user experience (single-sign on for multiple applications)
- XML-based protocol
 - Widely used and known

• Disadvantages

- Complex to implement
 - Errors
 - Lengthened timelines
- If down, can remove access from multiple systems

OAuth

- Like SAML it provides a framework and formatting for granting tokens
- Key difference: Authorization not authentication
 - i.e., a set of capabilities not attestation that you are who you say you are
 - Tokens are not tied to you

Source: Jason Goertzen and Miti Mazmudar

RECALL, WHAT IS DNS?

- The internet uses IP addresses to determine where to send messages
- IP addresses are difficult for people to remember!
- The Domain Name System is responsible to translating something easy for a human to remember into IP addresses

example.com -> 93.184.216.34

DNS **DNS IS BROKEN UP INTO ZONES** Root level root (.) Top level domains .ca .com Second level domains example.com uwaterloo.ca .gc.ca Third level domains hc-sc.gc.ca chrt-tcdp.gc.ca

Domain Name System (DNS) - dig command

dig crysp.uwaterloo.ca

DNS

ZONES CONTAIN RESOURCE RECORDS

example.com. 57094 IN AAAA example.com. 57047 IN A example.com. 57094 IN NS example.com. 57094 IN NS 2606:2800:220:1:248:1893:25c8:1946 93.184.216.34 b.iana-servers.net. a.iana-servers.net.

DNS protocol

Figure 11.7: DNS name resolution and query hierarchy (simplified).

Designed with no integrity projection

CS489 Winter 2023

Designed with no integrity projection

CS489 Winter 2023

Designed with no integrity projection

CS489 Winter 2023

• Designed with no integrity projection

CS489 Winter 2023

Designed with no integrity projection

CS489 Winter 2023
PROBLEM WITH DNS

Designed with no integrity projection

CS489 Winter 2023

DNS

PROBLEM WITH DNS

Designed with no integrity projection

CS489 Winter 2023

DNS

Use digital signatures to make sure the correct unmodified message is received and is from the correct entity!

- New records added to DNSSEC signed zone
- Sets of records (RRSets) are signed, rather than individual records
- Have two keys:
 - Key Signing Key : kept in trusted hardware, hard to change
 - Zone Signing Key : changed more often, smaller, used for records

Verification Procedure

- Assuming you trust the public KSK
- Use it to verify the RRset containing the ZSK
- Then use ZSK to verify the records

Source: cloudflare blog

HOW DO WE MAINTAIN KEY INTEGRITY?

Construct a chain of trust!

- The root verification KSK must be manually configurated on the machine making the request
- When the root ZSK is queried use the trust anchor to verify key and its signature
- Each zone's parent zone contains a "Delegate signer" (DS) record which is used to verify zone's KSK

• Hash of KSK

HOW DO WE MAINTAIN KEY INTEGRITY?

example.com.	86379	IN	A	93.184.216.34
example.com.	86328	IN	RRSIG	A 8 2 86400 20221120061546 20221030132217 59208 example.com. rZvjehQxdT5pJ4cw+o1y/BYmLkBLuqzjFaEOn9773Bhywt4qhKmME8DK oKD4yLjYJYFaqhUNCYb+iimCTdK+9+3UjJ35gRIDC3kuZ9hogtCoLBnt ltfgFwLQ0mdye8iH/FDDVKTm+CAz3UMfcwNzNahvg4BOnZ04HqnpZcWW pu4=
example.com.	73820	IN	NS	a.iana-servers.net.
example.com.	73820	IN	NS	b.iana-servers.net.
example.com.	86237	IN	RRSIG	NS 8 2 86400 20221122065049 20221101032317 59208 example.com. Uit3UXCeCIM+iwVkc2IX8n5A100CD9mH8rsTSfcsjQaZD9y54q7bT2mM cGMaiyjj/s0DGKLNvbFKLEgHgP0LNF4i+YzHvpct5MZD1c8JqnzYisOf xq+JQ4tLcsDmrnhJEinBVbiq/epEXs04I4GES+zyEgnz5TPErjTNRDzP 7CE=
example.com.	3600	IN	DNSKEY	257 3 8 AwEAAZ0aqu1rJ6orJynrRfNpPmayJZoAx9Ic2/RI9VQWLMHyjxxem3VU SoNUIFXERQbj0A9Ogp0zDM9YIccKLRd6LmWiDCt7UJQxVdD+heb5Ec4q IqGmyX9MDabkvX2NvMwsUecbYBq8oXeTT9LRmCUt9KUt/W0i6DKECxoG /bWTykrXyBR8eID+SQY43OAVjIWrVItHxgp4/rhBCvRbmdflunaPIgu2 7eE2U4myDSLT8a4A0rB5uHG4PkOa9dIRs9y00M2mWf4lyPee7vi5few2 dbayHXmieGcaAHrx76NGAABeY393xjImDNcUkF1gpNWUIa4fWZbbaYQz A93mLdrng+M=
example.com.	3600	IN	DNSKEY	256 3 8 AwEAAb1oJO+fCqdkxHtQYVB/tFPgJphc+VxjUYz+eVGf077zMxHKgce9 EwGBifFuKhjl2EA0VQPsWVX1vzuUmWri3OgsTBIITkdMz6VU4g94uO6T 9MIktokouOidIzvOqLR+O2LSXNhiYOIWA9s3Lxk5R2Irwd6vrRvT2CR1 GdZuUIKB
example.com.	2694	IN	RRSIG	DNSKEY 8 2 3600 20221129010414 20221107233521 31406 example.com. nMEQXWFatPZd/fkGgi9TI4Z02vokX+6zNNmZPSOnweki1Vb25f+olSgH b1WEg84lzyUw+zzwmS2G4J08PvS8+rFfu9vprvPwKVMsg0zBSyt3CCLS qa1DtY20BMWXCzqHD1n16220AUMNGuvrta6ikmuGfXT/gXyK5isenUPn kSbGsbrgEQKPZZQU6H/9nLK2qttyBscCQmJ4zilbsMyannBWgXtJgXhu 4AhiVAZIxCqII/ISNei3vOcl+h6C+RgjYsnoPD59HkpnC2H7TsaiLNf7 uYtbCjzRKLhRzIwIS3ASbWccGJ3LXruZwUNd0E/XqrxaCZXuwFrq+vtP RYAaPA==

example.com.	86379	IN	А	93.184.216.34 PRSet #1
example.com.	86328	IN	RRSIG	A 8 2 86400 20221120061546 20221030132217 59208 example.com.
				rZvjehQxdT5pJ4cw+o1y/BYmLkBLuqzjFaEOn9773Bhywt4qhKmME8DK
				oKD4yLjYJYFaqhUNCYb+iimCTdK+9+3UjJ35gRIDC3kuZ9hogtCoLBnt
				IttgFwL0Umdve8iH/FDDVKTm+CAz3UMfcwNzNahvd4B0nZ04HdnbZcWW_bu4=
example.com.	73820	IN	NS	a.iana-servers.net.
example.com.	73820	IN	NS	b.iana-servers.net.
example.com.	86237	IN	RRSIG	NS 8 2 86400 20221122065049 20221101032317 59208 example.com.
				Uit3UXCeClM+iwVkc2lX8n5A1O0CD9mH8rsTSfcsjQaZD9y54q7bT2mM
				cGMaiyjj/s0DGKLNvbFKLEgHgP0LNF4i+YzHvpct5MZD1c8JqnzYisOf
				xq+JQ4tLcsDmrnhJEinBVbiq/epEXs04I4GES+zyEgnz5TPErjTNRDzP 7CE=
example.com.	3600	IN	DNSKEY	257 3 8 AwEAAZ0aqu1rJ6orJynrRfNpPmayJZoAx9Ic2/RI9VQWLMHyjxxem3VU
				SoNUIFXERQbj0A90gp0zDM9YIccKLRd6LmWiDCt7UJQxVdD+heb5Ec4q
				IqGmyX9MDabkvX2NvMwsUecbYBq8oXeTT9LRmCUt9KUt/W0i6DKECxoG
				/DWTyKrXyBR8eiD+SQY43UAVjiWrVitHXgp4/mBCVRDmanunaPigu2
				/ecz04myDSL16d4A0iD5unG4Pk0d9uiRS9y00WiZmW14iyPee/Vi5iewZ dbayHYmioGcaAHry76NGAABoY303yilmDNcHkE1gnNW/HaAfW7bbaY0z A03mLdrng+M-
	2600	INI		256.2.0 AwEAAb1a. 10 x60 adlay140000 (P/FDa. Jaba x V/vil 1/a x x)/06077=Mx/U/(xaa0
example.com.	3000	IIN	DINSKET	250 3 8 AWEAADT0J0+1CQ0KXHQYVB/IFPGJD1C+VXJ0Y2+6VG10772MXHKGC69
				EWGDITFURTIJIZEAUVQFSWVATVZUUTTWITSUGSTDITTRUMZUVU4994UUUT QMIktokouOidlzvOal P±O2LSYNbiVOIWAQs2Lyk5P2lrwd6vrDvT2CP1 Cd7uLllKB
ovemple com	2604	INI		
example.com.	2094	IIN	RRSIG	DNSKEY & 2 3000 20221129010414 20221107233321 31400 8X8111018.0011. pMEOVW/EatDZd/fkCai0T1/7O2vokV+6zNNm7DSOpwoki1/b25f+alSaH
				h1WFa84IzvLlw+zzwmS2G4_I08PvS8+rEfu9vprvPwKV/Msa0zBSvt3CCLS
				ga1DtY20BMWXCzgHD1n16220AUMNGuyrta6ikmuGfXT/gXyK5isenUPn
				kSbGsbrgEOKPZZOU6H/9nLK2gttyBscCOmJ4zilbsMyannBWgXtJgXhu
				4AhiVAZIxCall/ISNei3vOcl+h6C+RaiYsnoPD59HkpnC2H7TsaiLNf7
				uYtbCjzRKLhRzIwIS3ASbWccGJ3LXruZwUNd0E/XgrxaCZXuwFrg+vtP RYAaPA==

example.com.	86379 86328	IN	A	93.184.216.34 RRSet #1
example.com.	00320		MIGIO	rZvjehQxdT5pJ4cw+o1y/BYmLkBLuqzjFaEOn9773Bhywt4qhKmME8DK oKD4yLjYJYFaqhUNCYb+iimCTdK+9+3UjJ35gRIDC3kuZ9hogtCoLBnt ltfgFwL00mdye8iH/EDDVKTm+CAz3UMfcwNzNahvg4B0nZ04HqnpZcWW pu4=
example.com.	73820	IN	NS	a.iana-servers.net. RRSet #2
example.com.	73820	IN	NS	b.iana-servers.net.
example.com.	86237	IN	RRSIG	NS 8 2 86400 20221122065049 20221101032317 59208 example.com. Uit3UXCeCIM+iwVkc2IX8n5A100CD9mH8rsTSfcsjQaZD9y54q7bT2mM cGMaiyjj/sODGKLNvbFKLEgHgP0LNF4i+YzHvpct5MZD1c8JqnzYisOf
example.com.	3600	IN	DNSKEY	257 3 8 AwEAAZ0aqu1rJ6orJynrRfNpPmayJZoAx9lc2/Rl9VQWLMHyjxxem3VU SoNUIFXERQbj0A9Ogp0zDM9YlccKLRd6LmWiDCt7UJQxVdD+heb5Ec4q lqGmyX9MDabkvX2NvMwsUecbYBq8oXeTT9LRmCUt9KUt/W0i6DKECxoG /bWTykrXyBR8eID+SQY430AVjlWrVltHxgp4/rhBCvRbmdflunaPIgu2 7eE2U4myDSLT8a4A0rB5uHG4Pk0a9dIRs9y00M2mWf4lyPee7vi5few2 dbayHXmieGcaAHrx76NGAABeY393xjlmDNcUkF1gpNWUIa4fWZbbaYQz A93mLdrng+M=
example.com.	3600	IN	DNSKEY	256 3 8 AwEAAb1oJO+fCqdkxHtQYVB/tFPgJphc+VxjUYz+eVGf077zMxHKgce9 EwGBifFuKhjl2EA0VQPsWVX1vzuUmWri3OgsTBIITkdMz6VU4g94uO6T 9MIktokouOidIzvOqLR+O2LSXNhiYOIWA9s3Lxk5R2Irwd6vrRvT2CR1 GdZuUIKB
example.com.	2694	IN	RRSIG	DNSKEY 8 2 3600 20221129010414 20221107233521 31406 example.com. nMEQXWFatPZd/fkGgi9TI4Z02vokX+6zNNmZPSOnweki1Vb25f+olSgH b1WEg84lzyUw+zzwmS2G4J08PvS8+rFfu9vprvPwKVMsg0zBSyt3CCLS qa1DtY20BMWXCzqHD1n16220AUMNGuvrta6ikmuGfXT/gXyK5isenUPn kSbGsbrgEQKPZZQU6H/9nLK2qttyBscCQmJ4zilbsMyannBWgXtJgXhu 4AhiVAZIxCqII/ISNei3vOcl+h6C+RgjYsnoPD59HkpnC2H7TsaiLNf7 uYtbCjzRKLhRzIwIS3ASbWccGJ3LXruZwUNd0E/XqrxaCZXuwFrq+vtP RYAaPA==

(0(070			RRSet #1
example.com.	86379	IN	A	
example.com.	86328	IN	RRSIG	A 8 2 86400 20221120061546 20221030132217 59208 example.com.
				rZvjenUxd15pJ4cw+01y/BYmLKBLuqZjFaEUn9//3Bnywt4qnKmME8DK
				0KD4yLjYJYFaqnuNCYD+IIIICTaK+9+30JJ359KIDC3KuZ9N0gC0LBNC
	70000	INI	NO	
example.com.	/3820	IN	NS	a.lana-servers.net.
example.com.	/3820	IN	NS	D.Iana-servers.net.
example.com.	86237	IN	RRSIG	NS 8 2 86400 20221122065049 20221101032317 59208 example.com.
				Ult3UXCeCIM+IwVkc2IX8n5A100CD9mH8rs1StcsjQa2D9y54q/b12mM
				cGMalyjj/sODGKLNVbFKLEgHgPULNF4I+YZHVpct5MZD1c8JqnZYISOf
	0600		DNOVEY	
example.com.	3600	IN	DNSKEY	25738 AWEAAZUaqu IrJ6orJynrRtNpPmayJZ0AX9ICZ/RI9VQWLMHyJXXem3VU
				SONUIFXERQDJUA9UQDUZDINI9YICCKLRUOLIIIWIDUL/UJQXVUD+IIED3EC4Q
				/bWTykrXyBR8elD+SOV4304/ilWrVltHygn4/rhBCyRbmdflunaPlau2
				7eF2U4mvDSLT8a4A0rB5uHG4PkOa9dIRs9v00M2mWf4lvPee7vi5few2
				dbavHXmieGcaAHrx/6NGAABey393XiimDNcUkF1dDNWUla4tWZbbaY0z A93mLdrnd+M=
example com	3600	IN	DNSKEY	256.3.8 AwEAAb1o, IO+fCadkxHtOYVB/tEPa, Inhc+VxiI IVz+eVGf077zMxHKace9
example.com.	0000		DNORLI	EwGBifEuKhil2EA0V0PsWVX1vzuUmWri30gsTBIITkdMz6VU4g94u06T
				9MlktokouOidlzvOaLR+O2LSXNhiYOIWA9s3Lxk5R2lrwd6vrRvT2CR1 GdZuUIKB
example com	2694	IN	RRSIG	DNSKEY 8 2 3600 20221129010414 20221107233521 31406 example com
chample.com.	2001			nMF0XWFatP7d/fkGgi9Tl4Z02vokX+6zNNmZPS0nweki1Vb25f+olSgH
				b1WEg84IzyUw+zzwmS2G4J08PvS8+rFfu9vprvPwKVMsg0zBSyt3CCLS
				qa1DtY20BMWXCzqHD1n16220AUMNGuvrta6ikmuGfXT/gXyK5isenUPn
				kSbGsbrgEQKPZZQU6H/9nLK2qttyBscCQmJ4zilbsMyannBWgXtJgXhu
				4AhiVAZIxCqII/ISNei3vOcl+h6C+RgjYsnoPD59HkpnC2H7TsaiLNf7
				uYtbCjzRKLhRzIwIS3ASbWccGJ3LXruZwUNd0E/XgrxaCZXuwFrg+vtP RYAaPA==

Next Class, Confidentiality!