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Abstract

An electronic cash (e-cash) scheme lets a user with-
draw money from a bank and then spend it anony-
mously. E-cash can be used only if it can be securely
and fairly exchanged for electronic goods or services. In
this paper, we introduce and realize endorsed e-cash.
An endorsed e-coin consists of a lightweight endorse-
ment x and the rest of the coin which is meaningless
without x. We reduce the problem of exchanging e-cash
to that of exchanging endorsements. We demonstrate
the usefulness of endorsed e-cash by exhibiting simple
and efficient solutions to two important problems: (1)
optimistic and unlinkable fair exchange of e-cash for
digital goods and services; and (2) onion routing with
incentives and accountability for the routers. Finally,
we show how to represent a set of n endorsements using
just one endorsement; this means that the complexity
of the fair exchange protocol for n coins is the same as
for one coin, making e-cash all the more scalable and
suitable for applications. Our fair exchange of multi-
ple e-coins protocol can be applied to fair exchanges of
(almost) any secrets.

Keywords E-cash, digital signatures, fair exchange,
threshold cryptography

1 Introduction

The main idea of anonymous electronic cash (re-
ferred to as e-cash in the sequel), invented by David
Chaum [Cha83, Cha84], is that, even though the same
bank is responsible for giving out electronic coins,
and for later accepting them for deposit, it is im-
possible for the bank to identify when a particu-
lar coin was spent (unless a user tries to spend the
same coin more than once, in which case we want to
catch this behavior). E-Cash has been studied exten-
sively [CFN90, FY92, CP93, Bra93a, Bra93b, CPS94,
Bra93c, SPC95, Jak95, FTY96, Tsi97, BP02].

In the past few years, there has been an explo-
sion of e-cash research. Most work has focused on

efficient withdrawal, spend, and fraud detection pro-
tocols. Camenisch et al. [CHL05] introduce compact
e-cash, which allows the user to withdraw a wallet
of n e-coins performing only O(1) multi-base expo-
nentiations. All n coins can be stored using a con-
stant amount of memory; to spend a single coin re-
quires O(1) multi-base exponentiations. Wei [Wei05]
shows how to efficiently trace all coins of dishonest
users. Camenisch et al. [CHL06] extend compact e-
cash to allow money laundering detection. Teranish
and Sako [TS04], Nguyen and Safavi-Naini [NSN05],
and Camenisch et al. [CHK+06] show how to use vari-
ations of compact e-cash schemes for anonymous au-
thentication.

This paper adapts e-cash to make it useful for prac-
tical applications. It is crucial for users to have the
ability to exchange e-cash for digital goods and ser-
vices in a secure and fair fashion. A merchant should
get paid only if the user gets the merchandise. How-
ever, an e-coin is really a (blind) digital signature and
does not necessarily lend itself to such protocols. Prior
approaches fail to provide fairness to the user: if the
exchange aborts, then the user loses his privacy and,
sometimes, even his money. In this paper, we introduce
the idea of endorsed electronic cash. We let the user
publish an unlimited number of promises of a coin.
Promises of the same coin cannot be linked to each
other. Each promise comes with a unique endorsement.
The coin is not spent until the user gives a merchant
the endorsement that goes with the promised coin. Ex-
changing e-cash is reduced to exchanging lightweight
endorsements.

The user withdraws a wallet coin from the bank.
In regular e-cash, the user transforms the wallet coin
into an e-coin (coin) and gives it to a merchant. He
cannot spend the same wallet coin twice. In endorsed
e-cash, a user can transform a wallet coin into an unlim-
ited number of endorsable e-coins (φ, x, y, coin ′). The
value coin ′ is a blinded version of coin and φ(x) = y,
where φ is a one-way homomorphic function. The tu-
ple (φ, x, y, coin ′) should have enough information to
reconstruct coin. The user gives the merchant an un-
endorsed coin (φ, y, coin ′) and saves the endorsement
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x for himself. The merchant must learn x in order to
get the coin. This can be done via a fair exchange, or
some other protocol. Thus, we can focus on design-
ing protocols to let the merchant obtain a lightweight
endorsement, rather than the entire e-coin. If an ex-
change fails, the user can make more unendorsed coins
from the original wallet coin. None of these unendorsed
coins can be linked to each other, even if one of them
is eventually endorsed. We formally define endorsed
e-cash in Section 2.3, and realize it using Camenisch
et al. [CHL05] compact e-cash as a starting point in
Section 3.2. We give an on-line variant in Section 3.4.
Fair Exchange Applications. Suppose Alice
wishes to purchase some on-line goods from Bob. Al-
ice wants to make sure that she doesn’t give away her
money unless she actually gets the goods. Bob wants
to make sure that he doesn’t give away the goods with-
out getting paid. This is a well-known problem called
fair exchange [CTS95, Mic97, ASW97, ASW00]. In op-
timistic fair exchange [Mic97, ASW00], fairness is en-
sured by the existence of a trusted third party (TTP)
who intervenes only if one of the players claims that
something went wrong.

Prior work on fair exchange focused on exchanging
digital signatures, or on exchanging a digital signa-
ture for digital goods or services. There have been
several prior attempts to realize fair exchange of e-
cash. Jakobsson’s [Jak95] and Reiter, Wang and
Wright’s [RWW05] schemes’ are not fair to the user:
the user is not allowed to reuse a coin from a failed
exchange. Asokan, Shoup and Waidner [ASW00] show
how to exchange Brands’ e-cash [Bra93b], but their
protocol is not quite fair to the user either: if an ex-
change fails, a user may reuse the coin, but he cannot
do so unlinkably. This weakness in all three schemes
cannot be solved by a TTP. At early stages of the fair
exchange protocol, the merchant can ask the TTP to
terminate the exchange; however, the user would have
already revealed too much information about his coin.
This is a serious problem because on-line multi-party
protocols often fail due to network delay, computers
crashing, and etc.

In endorsed e-cash, an honest user can issue an un-
limited number of unlinkable unendorsed coins corre-
sponding to the same wallet coin and then choose which
one of the coins to endorse.1 If a fair exchange fails, the
user can throw out the corresponding unendorsed coin,
and use the same wallet coin to generate another one.

1The user can make O(2k) promises of the same e-coin. To
create an e-coin, the user makes some random choices; if the user
makes the same choices twice, this results in two identical e-coins
that can be linked to each other. The endorsement for one is an
endorsement to the other. In this case, the user risks not only
losing some privacy, but even being accused of double spending.
For an honest user, this scenario can happen with only negligible
probablity.

We achieve this by applying Asokan, Shoup, and Waid-
ner’s [ASW00] optimistic fair exchange of pre-images of
a homomorphic one-way function protocol to endorse-
ments, in Section 4.1.

In the real world, it is often impossible to buy digital
goods with a single coin. The obvious solution is to run
a fair exchange of all the coins together: to do this, a
user must verifiably escrow all n endorsements. If the
TTP gets involved, it has to store, and later decrypt, all
n escrows. (A verifiable escrow costs about ten times
more than, say, an ElGamal encryption.) Surprisingly,
it turns out that it is possible to compress n endorse-
ments into one! The burden on the TTP is now the
same regardless of how much the digital goods cost.
Details in Section 4.2.
Buying Services. E-cash can be used to purchase
digital services. Suppose a user asks a service-provider
to perform several tasks on its behalf, for example, to
negotiate with various certification authorities or to en-
gage in a series of financial transactions. The user does
not want to pay the service-provider unless all of the
tasks are completed, because often, performing some
of the tasks is no better or even worse than perform-
ing none of them. To solve this problem, we introduce
threshold endorsed e-cash (Section 4.3) where the user
can create n endorsements for one e-coin, of which any
m suffice to reconstruct the coin.

For a concrete example, consider anonymous re-
mailers and onion routing schemes, such as [Cha81,
DDM03, CL05]. A user sends an encrypted message
via a chain of routers; each router peels off a layer of
encryption before passing the message on to the next
router. The user needs to give routers an incentive
to forward the message. If the user simply includes
an e-coin in each layer of encryption, then a router
gets paid even if it does not forward the message. Re-
iter et al. [RWW05] suggest including a “ripped” e-
coin [Jak95] in each layer, along with a verifiable en-
cryption of the second half of the coin under the next
router’s public-key. A router would pass the message
and hope that the next router in the chain is honest and
would send the second half of the coin back. However,
the next router has no incentive to do so – because it
does not need anything from the previous router. Even
worse, the user loses the coin regardless of whether a
router passes its message.

Threshold endorsed e-cash easily overcomes this
problem. We set n = m = 2; each layer of the onion
reveals a threshold unendorsed e-coin. To get the en-
dorsement, a router must contact both the previous
and next routers in the chain. Both are motivated to
talk to him because he has endorsements for their coins.
A dishonest router does not get paid and the user does
not lose the e-coin (as long as we can enforce a timeout
after which a dishonest router cannot suddenly contact
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other routers on the chain, complete the exchange, and
deposit the e-coin).
Practical Applications. Our scheme is efficient
enough to be deployed on most computing devices,
from PCs to smartcards. We believe that e-cash
is going to become more important in today’s elec-
tronic world. In large peer-to-peer systems, par-
ticipants have to trust others to perform services
for them. Anonymous remailers and onion routing
schemes [Cha81, DDM03, CL05] are a good example:
to provide anonymity for one peer, several peers have to
be on-line and available to serve as routers. Other ex-
amples are peer-to-peer systems for publishing [Coh03]
and backing up [McC01] data. Participants in a peer-
to-peer system perform services to earn brownie points
and subsequently use them to buy services from oth-
ers. Peer-to-peer systems already have economies of
their own [ADS03] and for the sake of privacy, these
economies should utilize e-cash.
Organization. We introduce our notation, state our
complexity assumptions and define security for com-
pact and endorsed e-cash in Section 2. We construct
off-line and on-line endorsed e-cash in Sections 3.2
and 3.4, respectively. Finally, Section 4 contains en-
dorsed e-cash protocols: fair exchange for a single e-
coin in Section 4.1, efficient fair exchange of multiple
e-coins in Section 4.2, and threshold endorsed e-cash in
Section 4.3.

2 Notation and Definitions

We say ν is a negligible function in k if, for all c, and
all large enough k, ν(k) < nc. A homomorphic function
f : D → R has the property that f(a⊕b) = f(a)⊗f(b),
where ⊕ and ⊗ are the group operations in D and
R. If f is a one-way function, then given f(x) (for
some randomly chosen x), any polynomial time algo-
rithm has a negligible chance of guessing an x′ such
that f(x′) = f(x). Let G be a group of prime or-
der where the discrete logarithm problem is hard and
g1, . . . , gk+1 be generators of G. The Pedersen commit-
ment [Ped92] of (x1, . . . , xk) with randomization factor
xk+1 is: Ped(x1, . . . , xk;xk+1) =

∏
1≤i≤k+1 gxi

i .

2.1 Security Assumptions

We list the security assumptions used by our en-
dorsed e-cash protocol.

Definition 2.1 (Discrete Logarithm Assumption). Let
G be a group of prime order. Suppose we randomly
choose g, a generator of G, and x ∈ Zq. The Discrete
Logarithm Assumption states that any PPTM that gets
as input y = gx can compute x with, at most, negligible
probability.

Definition 2.2 (Diffie-Hellman Assumption). Let G
be a group of prime order. Suppose we randomly choose
g, a generator of G, and x, y ∈ Zq. The Diffie-Hellman
Assumption states that any PPTM that gets as input
(g, gx, gy) can compute gxy with, at most, negligible
probability.

Definition 2.3 (q-DHI Assumption ([MSK02])). Let
G be a group of prime order. Suppose we randomly
choose g, a generator of G, and x ∈ Zq. The q-Diffie-
Hellman Inversion assumption states that no PPTM
can compute g1/x given (g, gx, . . . , g(xq)).

Definition 2.4 (q-DBDHI Assumption ([BB04])). Let
G, Ĝ be groups of prime order and let e : G × G → Ĝ
be a bilinear map. Choose a random g, a gener-
ator of G, and x ∈ Zq. The q-Decisional Diffie-
Hellman Inversion assumption states that no PPTM
can distinguish e(g, g)1/x from random, even after see-
ing (g, gx, . . . , g(xq)).

Definition 2.5 (Strong RSA Assumption ([BP97])).
Let n be an RSA modulus. Suppose we choose a ran-
dom z ∈ Z∗n. The Strong RSA Assumption states that
a PPTM on input (n, z) can output values y ∈ Z∗n and
r > 1 such yr = z mod n with at most negligible prob-
ability.

Definition 2.6 (Paillier Assumption ([Pai99])). Let n
be an RSA modulus and P = {an|a ∈ Zn2}. The Pail-
lier assumption states that no PPTM can distinguish a
random element of P from a random element of Zn2 .

2.2 Definition of E-Cash

Suppose we have an e-cash system EC =
(BKeygen,UKeygen,Withdraw,Spend,Deposit,
PublicSecurityProtocols). (Different e-cash systems
have different sets of associated algorithms; for con-
sistency, we will use the Camenisch et al. defini-
tion [CHL05].) We briefly overview each of the pro-
tocols and their security properties. We will give rigor-
ous treatment to only those protocols whose definition
and security properties are relevant to understanding
endorsed e-cash.

We have three types of players: banks, users and
merchants. Merchants are a subset of users. We
generally use B to denote a bank, M to denote a
merchant and U to denote a user. When we write
Protocol(U(x),B(y)) we mean that there is a protocol
called Protocol between a user U and a bank B in which
the private input of U is x and the private input of B
is y.

A user can withdraw a wallet W of n coins from his
bank account. An e-cash system defines a set of proto-
cols for transferring wallets and coins between players
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and for handling cheaters. A protocol can either be a
function invoked by a single player, in which case we
list the arguments to the function, or an interactive
two-party protocol, in which case we list the relevant
parties and the private inputs each one uses.

BKeygen(1k, params) A bank B invokes BKeygen to
generate (pkB, skB), its public/private-key pair.

UKeygen(1k, params) A user U (or a merchant M)
invokes UKeygen to generate (pkU , skU ), its
public/private-key pair.

Withdraw(U(pkB, skU , n),B(pkU , skB, n)) This is a
protocol between a user U and a bank B that lets
the user withdraw n coins from his bank account.
The user gets either a wallet W of n coins, or an
error message. The bank gets either some trace
information that it stores in a database, or an
error message.

Spend(U(W,pkM),M(skM, pkB, n)) This is a protocol
between a user U and a merchantM that transfers
one coin from the user’s wallet W to the merchant.
The merchant gets an e-coin coin and the user
updates his wallet to contain one less coin.

Deposit(M(skM, coin, pkB),B(pkM, skB)) This is a
protocol between a merchant M and a bank B
that lets the merchant deposit a coin he got from
a customer into his bank account.

PublicSecurityProtocols(protocol , params, arglist) This
is a set of functions that can be invoked by
anybody to identify double spenders and verify
their guilt. The bank finds double-spenders,
but it must be able to convince everyone else.
The Camenisch et al. protocols [CHL05] include
Identify(params, coin1 , coin2 ) to identify a double
spender, VerifyGuilt(params, coin, pkU , proof ) to
publicly verify that user U had double spent a coin,
Trace(params, coin, pkU , proof , database) to find
all coins spent by a guilty user, VerifyOwnership
(params, coin, proof , pkU ) to verify that a guilty
user spent a particular coin. The exact set of
functions depends on the e-cash system and its
desired security properties.

The security properties of an e-cash system depend
on the model we use: plain, random oracle, common
random string, etc. Here we sketch what an adversary
must do to defeat the e-cash system and explain where
the properties of the security model come into play;
we refer the reader to Camenisch et al. [CHL05]. We
require four properties from an e-cash system:

Correctness: If an honest user runs Withdraw with
an honest bank, then neither outputs error; if an honest

user runs Spend with an honest merchant, then the
merchant accepts the coin.

Anonymity: Even if a malicious bank conspires
with one or more malicious merchants, the bank cannot
link a user to any coins he spends. We create a simula-
tor S and give it special powers (e.g. control of random
oracle, ability to generate common parameters, control
of key generation). The simulator should be able to
run the Spend protocol without knowing any informa-
tion about any user’s wallet or public/secret-key pair.

Formally, we create an adversary A that plays the
part of the bank and of all merchants. A creates the
bank’s public-key pkB. Then, A gets access to an in-
terface Game that plays either the real or ideal game;
A must determine which. A can make four types of
queries to Game:

GameSetup(1k) generates the public parameters
params and private parameters auxsim for S.

GameGetPK(i) returns the public-key of user Ui, gen-
erated by UKeygen(1k, params).

GameWithdraw(i) runs the Withdraw protocol with
user Ui: Withdraw(Ui(pkB, ski, n),A(state, n)).
(We use state to denote the state of the adversary;
it is updated throughout the course of protocol ex-
ecution). We call Wj the wallet generated the jth
time protocol Withdraw is run.

GameSpend(j) in the real game, this runs the spend
protocol with the user U that holds the wallet Wj :
Spend(U(Wj),A(state, n)). In the ideal game, S
pretends to be the user: Spend(S(params,
auxsim, pkB),A(state, n)); S does not have access
to the wallet Wj or know who owns it.

An adversary is legal if it never asks a user to double-
spend a coin: for all j, the adversary never calls
GameSpend(j) more than n times (where n is the size
of the wallet). An e-cash scheme preserves anonymity
if, for all pkB, no computationally bounded legal ad-
versary can distinguish between the real game and the
ideal game with more than negligible probability.

Balance: No group of dishonest users and mer-
chants should be able to deposit more coins than
they withdraw. We assume that each coin has a se-
rial number (generated during the Withdraw protocol)
We create a knowledge extractor X that executes the
Withdraw protocol with u dishonest users and gener-
ates un coin serial numbers: S1, . . . , Sun (we assume
each user withdraws n coins). No adversary should be
able to successfully deposit a coin with serial number
S unless S ∈ {S1, . . . , Sun}. Again, X must have addi-
tional powers, such as control of the random oracle or
special knowledge about public parameters.
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Culpability and Exculpability: Any user that
runs Spend twice on the same coin should be caught
by the bank; however, a malicious bank should not be
able to conspire with malicious merchants to frame an
honest user for double-spending. We omit the specifics
of these definitions and refer the reader to Camenisch
et al. [CHL05].

2.3 Definition of Endorsed E-Cash

Endorsed e-cash is similar to E-cash. The only dif-
ference is that spending a coin is split into two stages.
In the first stage, a user gives a merchant a blinded
version of the coin, a.k.a. an unendorsed coin. An un-
endorsed coin is not a real coin and cannot be deposited
with the bank. A user is allowed to issue unendorsed
coins as often as he wants — it should be impossible to
link two unendorsed versions of the same coin. (This
is the chief difference between our solution and that of
Jakobsson [Jak95] and Asokan et al. [ASW00]). A user
can endorse a coin by giving a particular merchant the
information he needs to transform the unendorsed coin
into a real coin (i.e. an endorsed coin) that can be de-
posited with the bank. As long as a user endorses at
most one version of the same wallet coin, he is not a
double-spender and cannot be identified.

An endorsed e-cash system is almost identical to
a regular e-cash system, except Spend is replaced by
SplitCoin, ESpend, and Reconstruct. We define the
three new protocols:

SplitCoin(params,Wj , pkB) A user U can take a coin
from his wallet and generate (φ, x, y, coin′). The
value coin′ is a blinded version of the e-coin. The
function φ is a one-way homomorphic function,
such that φ(x) = y. The tuple (φ, x, y, coin ′)
should have enough information to reconstruct the
e-coin.

ESpend(U(W,pkM),M(skM, pkB, n)) This is the en-
dorsed spend protocol. The user U privately runs
SplitCoin to generate (φ, x, y, coin′). The user
gives the merchant (φ, y, coin′), but keeps x for
himself. The merchant uses coin′ to verify the va-
lidity of the unendorsed coin.

Reconstruct(φ, x, y, coin′) This function (typically used
by a merchant) reconstructs a coin that can be
deposited with the bank if and only if φ(x) = y.

An endorsed e-cash scheme should have the same prop-
erties of correctness, anonymity, balance, culpability
and exculpability as an e-cash scheme. However, the
definitions must be slightly modified to fit the new set
of protocols:

Correctness: (Informally), if an honest user runs
Withdraw with an honest bank, then neither will output

an error message; if an honest user runs SplitCoin and
gives the resulting (φ, y, coin′) to an honest merchant
via the ESpend protocol, the merchant will accept; if an
honest merchant gets (φ, y, coin′) from an honest user
and learns the value x = φ−1(y), then he’ll be able to
use Reconstruct to generate a valid coin that an honest
bank will accept during the Deposit protocol.

Anonymity: Splitting a coin into two pieces:
(φ, y, coin′) and x should not increase the ability of a
consortium of a malicious bank and merchants to link
a coin to a user. Nor should an adversary be able to
link two unendorsed versions of the same coin to each
other. Once again, we create a simulator S and give
it special powers. The simulator should be able to run
the ESpend protocol without knowing any information
about any user’s wallet or public/secret-key pair.

Formally, we create an adversary A that plays the
part of the bank and of all merchants. A creates the
bank’s public-key pkB. Then, A gets access to an in-
terface Game that plays either a real game or an ideal
game; A must determine which. A can make five types
of queries to Game:

GameSetup(1k) generates the public parameters
params and private parameters auxsim for S.

GameGetPK(i) returns the public-key of user Ui, gen-
erated by UKeygen(1k, params).

GameWithdraw(i) runs the Withdraw protocol with
user Ui: Withdraw(Ui(pkB, ski, n),A(state, n)).
We call Wj the wallet generated the jth time the
protocol Withdraw is run.

GameESpend(j, J) gives the adversary an unen-
dorsed coin number J from wallet Wj . In
the real game, GameESpend runs the ESpend
protocol with the user U that holds the wal-
let Wj : ESpend(U(Wj , J, pkB),A(state, n)).
In the ideal game, S plays the part
of the user and runs the protocol:
ESpend(S(params, auxsim, pkB),A(state, n)).
S knows nothing about the wallet Wj , the partic-
ular coin J requested, or the user who owns it. In
the end, the adversary gets the unendorsed coin
(φ, y, coin′).

GameEndorse(φ, y, coin′) returns either the endorse-
ment x = φ−1(y) or an error message if the
protocol GameESpend has not previously issued
(φ, y, coin′).

An adversary is called legal if it never asks
a user to double-spend. Suppose two separate
calls to GameESpend(j, J) result in the responses
(φ, y1, coin ′1) and (φ, y2, coin ′2). A legal adver-
sary never calls both GameEndorse(φ, y1, coin ′1) and
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GameEndorse(φ, y2, coin ′2). An endorsed e-cash
scheme preserves anonymity if no computationally
bounded legal adversary can distinguish between the
real and ideal game with more than negligible proba-
bility.

Balance: The balance property remains the same.
Culpability and Exculpability: We com-

bine SplitCoin, ESpend, and Reconstruct to cre-
ate a protocol SPEND that corresponds to the
Spend protocol of a standard e-cash scheme. We
need to show that the e-cash system EC =
(BKeygen,UKeygen,Withdraw,SPEND,Deposit,
PublicSecurityProtocols) meets the culpability and ex-
culpability guarantees of a standard e-cash system.
We define SPEND(U(W,pkM),M(skM, pkB, n)) as fol-
lows: First, U calls SplitCoin(params,Wj ,
pkB) to generate the tuple (φ, x, y, coin ′) and sends it
to M. When M receives (φ, x, y, coin ′), he verifies
that (φ, y, coin ′) is valid (as in ESpend), and checks if
φ(x) 6= y coin. If either test fails, M rejects. Oth-
erwise, M creates the corresponding endorsed coin
coin = Reconstruct(φ, x, y, coin ′). M stores coin un-
til he is ready to deposit it.

The culpability and exculpability properties provide
protection if the user issues only one unendorsed coin
per wallet coin – in this case, endorsed e-cash reduces
to standard e-cash. So what prevents dishonest mer-
chants from using an endorsement from one coin to
generate endorsements for other coins? If a merchant
successfully deposits a falsely endorsed coin with the
bank, then he violates the balance property. If the
merchant uses the fake endorsement to frame a user
for double-spending, then he violates anonymity.

3 Endorsed E-Cash Instantiation

In this section we describe how to build an endorsed
e-cash system from the Camenisch, Hohenberger and
Lysyanskaya ([CHL05] Section 4.1) e-cash system, re-
ferred to as CHL in sequel. All we have to do is split
the CHL Spend protocol into (SplitCoin, Reconstruct,
ESpend). We review the CHL Spend protocol in Sec-
tion 3.1. Then we modify it to create an endorsed
e-cash system in Section 3.2 and prove it is secure in
Section 3.3. We construct a CHL-like on-line endorsed
e-cash system in Section 3.4.

3.1 CHL Compact E-Cash

CHL compact e-cash lets users withdraw several
coins at once. A user has a secret-key u ∈ Zq and
public-key gu. To withdraw n coins, the user ran-
domly chooses s, t ∈ Zq and obtains from the bank
a CL-signature σ on (u, s, t). A CL-signature [CL02,

CL04] lets the bank sign a message without learn-
ing what it is (though the bank learns some informa-
tion about σ). Now the user has a wallet of n coins:
(0, u, s, t, σ), . . . , (n− 1, u, s, t, σ).

To pay a merchant, the user constructs an e-coin
(S, T, Φ, R) from the wallet coin (J, u, s, t, σ) (see Algo-
rithm 3.1). S is a unique (with high probability) serial
number, (T,R) are needed to trace double-spenders —
knowing two different (T,R) values corresponding to
the same wallet coin lets the bank learn the user’s iden-
tity, Φ is a zero-knowledge proof that tells the merchant
and bank that the e-coin is valid, and R is as hash of
the contract between the user and merchant and should
be unique to every transaction (this lets the bank use
(T,R) to catch double-spenders).

To deposit and e-coin, the merchant gives
(S, T, Φ, R) to the bank, along with his public-key. The
bank checks whether it has already seen a coin with
serial number S – if yes, then the bank knows that
somebody is trying to double-spend because S is sup-
posed to be unique. If it has seen (S, R) before, then
the merchant is at fault because R is unique to ev-
ery transaction If the bank hasn’t seen (S, R) before,
then the user is at fault and the bank uses the values
(S, Told,Φold, Rold) and (S, T, Φ, R) to learn the double-
spending user’s identity. CHL finds double-spenders
in a manner similar to Chaum et al. [CFN90], but it
only learns the user’s public-key, and not his secret-
key (Camenisch et al’s extended solution also reveals
the secret-key). This distinction has great significance
to fair exchange (Section 4).

Global parameters: Let k be the security parameter.
All computation is done in a group G, of prime order
q = Θ(2k), with generator g. We assume there is a
public-key infrastructure.

Spend lets a user U pay a merchant M the wallet
coin (J, u, s, t, σ): First, the user and merchant agree on
a contract contract (we assume each contract is unique
per merchant). The merchant gives the user his public
key pkM. Then, the user runs CalcCoin, as defined in
Algorithm 3.1, to create the coin (S, T, Φ, R) and sends
it to the merchant. Finally, the merchant verifies Φ to
check the validity of the coin (S, T, Φ, R).

Efficiency: CalcCoin uses the Dodis-Yampolskiy
pseudo-random function [DY05] to instantiate Fs(x) =
g1/(s+x+1). As a result, a user must compute seven
multi-base exponentiations to build the commitments
and eleven more for the proof. The merchant and bank
need to do eleven multi-base exponentiations to check
that the coin is valid.

Security: CHL requires (1) the security of a CL-
signature, which depends on the Strong RSA Assump-
tion, (2) the zero-knowledge proof (or argument) sys-
tem, which relies on the Strong RSA Assumption and
the Random Oracle Model, (3) the collision-resistant
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Algorithm 3.1: CalcCoin
Input: pkM ∈ {0, 1}∗ merchant’s public key,

contract ∈ {0, 1}∗
User Data: u private key, gu public key,

(s, t, σ, J) a wallet coin
R← H(pkM||info) ;
S ← Fs(J) ;
T ← guFt(J)R ;
Calculate ZKPOK Φ of (J, u, s, t, σ) such that:

0 ≤ J < n
S = Fs(J)
T = guFt(J)R

VerifySig(pkB, (u, s, t), σ) = true
F is a pseudo-random function, H is a
collision-resistant hash function.
return (S, T, Φ, R)

hash function H and (4) the security of the pseudo-
random function Fs(x), which if instantiated as the
Dodis-Yampolskiy pseudo-random function, depends
on the q-DHI and q-DBDHI assumptions

3.2 Endorsed E-Cash Construction

Our endorsed e-cash construction is based on CHL.
The wallet coin (J, u, s, t, σ) is the same as before, but
the unendorsed coin is a blinded version of the CHL
e-coin. Instead of giving the merchant (S, T, Φ, R), the
user chooses a random endorsement (x1, x2, x3) and
calculates (S′, T ′,Φ′, R, y), where S′ = Sgx1 , T ′ =
Tgx2 and y = Ped(x1, x2;x3). The value Φ′ is a
zero-knowledge proof that the unendorsed coin is valid.
Once the merchant learns the endorsement, he can eas-
ily reconstruct (S, T, Φ′, R), which along with y and
(x1, x2, x3) constitutes an endorsed coin that can be
deposited with the bank. The user can generate as
many unendorsed versions of the same wallet coin as
he wants by choosing different endorsements. However,
if he endorses two versions of the same wallet coin, the
bank will identify him using the same method as in
CHL.

Global parameters: Same as in CHL. Additionally,
let g, h1, h2 be elements in G whose discrete logarithms
with respect to each other are unknown. We define the
homomorphic one-way function φ : Z3

q → G, where
φ(a, b, c) = ha

1hb
2g

c. We split the public parameters
params = (paramsCHL, paramsZK ), where paramsZK

is used for the ZKPOK in the SplitCoin protocol and
paramsCHL is used for everything else (and is, in fact,
the same as in the CHL system).

SplitCoin, defined in Algorithm 3.2, creates an
endorsable coin (S′, T ′,Φ′, R, (x1, x2, x3), y), where
(S′, T ′,Φ′, R, y) is the unendorsed coin and (x1, x2, x3)

is the endorsement (with φ(x1, x2, x3) = y). The val-
ues S′ and T ′ are blinded versions of S and T and Φ′

is the zero-knowledge proof that S′ and T ′ are formed
correctly. The merchant verifies Φ′ during the ESpend
protocol.

When the merchant receives the endorsement
(x1, x2, x3) for his unendorsed coin (S′, T ′,Φ′, R, y) he
calls Reconstruct to create an endorsed coin (S =
S′/gx1 , T = T ′/gx2 ,Φ′, R, (x1, x2, x3), y). The en-
dorsed coin is almost identical to the original coin
(S, T, Φ, R), except that Φ′ is a zero-knowledge proof of
slightly different information. Possession of that infor-
mation is sufficient to create a valid CHL coin and the
bank can safely accept it. The bank can also iden-
tify double-spenders because S, T, R are constructed
the same way as in the CHL Spend protocol.

Algorithm 3.2: SplitCoin
Input: pkM ∈ {0, 1}∗ merchant’s public key,

contract ∈ {0, 1}∗
User Data: u private key, gu public key,

(s, t, σ, J) a wallet coin
R← H(pkM||contract) ;
x1, x2, x3 ← Zq ;
y ← φ(x1, x2, x3) ;
S′ ← Fs(J)gx1 ;
T ′ ← guFt(J)Rgx2 ;
Calculate ZKPOK Φ′ of (J, u, s, t, σ, x1, x2, x3)
such that:

y = hx1
1 hx2

2 gx3

0 ≤ J < n
S′ = Fs(J)gx1

T ′ = guFt(J)Rgx2

VerifySig(pkB, (u, s, t), σ) = true
return (S′, T ′,Φ′, R, (x1, x2, x3), y)

Efficiency: SplitCoin is very similar to CalcCoin; it
requires two more multi-base exponentiation from the
user, one to compute y and one due to its inclusion
in the proof, and one more multi-base exponentiation
from the merchant and bank to verify the proof. (Note:
we compute T ′ slightly different from CHL, but this has
a negligible effect on the computation.)

Security: our endorsed e-cash system requires the
same assumptions as CHL.

3.3 Security

Theorem 3.1. The endorsed e-cash system described
in Section 3.2 meets the definition of a secure endorsed
e-cash system.

Proof. Correctness. It is easy to see the system is cor-
rect because the key values S, T, R are identical to the
CHL e-cash system.
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Anonymity. We construct an algorithm S that im-
personates all honest users of the endorsed e-cash sys-
tem without access to their data during the ESpend
protocol. (Recall, in our definition, the adversary ac-
cesses an interfaces Game, which either invokes real
users or S). S will use SCHL, the simulator for the CHL
Spend protocol, and SZK , the simulator for the zero-
knowledge system, as building blocks. We will show
that any adversary A that can distinguish when the in-
terface Game plays the real game with real users or the
ideal game using S can either (1) break the anonymity
of CHL or (2) violate the zero-knowledge property of
the ZKPOK system.
S gets as input (params, auxsim, pkB). The en-

dorsed e-cash system generated (params, auxsim)
during GameSetup; some of those parameters are
intended for SCHL and SZK : (paramsCHL,
auxsimCHL) is intended for SCHL and
(paramsZK , auxsimZK) is for SZK .
S has to simulate ESpend. It gets (contract , pkM)

from A. S executes Spend(SCHL(paramsCHL,
auxsimCHL),S(contract , pkM, pkB, n)) (n is the size of
the wallets), pretending to be a merchant. S does
not need the merchant’s secret-key for the Spend pro-
tocol. SCHL gives S some coin (S, T, Φ, R). S pre-
tends to run SplitCoin. First it randomly generate
(x1, x2, x3). Then it uses the the “endorsement” to cal-
culate: y = φ(x1, x2, x3), S′ = Sgx1 , and T ′ = Tgx2 .
Then it calls SZK(paramsZK , auxsimZK) to generate a
fake proof Φ′. S sets coin ′ = (S′, T ′,Φ′, R, y). It stores
(φ, (x1, x2, x3), y, coin ′) in a database for later use and
returns (φ, y, coin ′) to the adversary.

We prove S is indistinguishable from real users via a
hybrid argument. Consider an algorithm S1 that acts
just like a real user, but after constructing a legitimate
unendorsed coin, invokes SZK to create a fake proof
Φ′. If A can distinguish S1 from a real user, A violates
the zero-knowledge property of the ZKPOK system.
Now consider algorithm S2 that generates unendorsed
coins using SCHL and SZK , but makes sure that all
unendorsed versions of the same coin have the same
serial number. In this case, if A can distinguish S1

from S2, A violates the anonymity of CHL. Finally,
by the definition of SplitCoin, the S′ and T ′ are in-
formation theoretically independent of the real serial
number. Therefore, S2 is indistinguishable from S. By
the hybrid argument, no adversary can tell when Game
is playing the ideal game or the real game.

Balance. We need to show that no consortium
of users and merchants can cheat an honest bank.
Suppose we have an adversary A that can break
the balance property of our endorsed e-cash system.
A executes the Withdraw protocol u times to with-
draw un coins (assuming n coins per wallet). We
take the knowledge extractor X from the CHL sys-

tem and use it to generate serial numbers S1, . . . , Sun

from all the invocations of Withdraw (recall that our
endorsed e-cash uses the same Withdraw protocol
as CHL). Eventually, A produces an endorsed coin
(S, T, Φ′, R, (x1, x2, x3), y) that the bank accepts, but
S 6∈ S1, . . . , Sun. Since the bank accepted the en-
dorsed coin, this implies that φ(x1, x2, x3) = y and
Φ′ is valid. Since Φ′ is formed by a sound ZKPOK
system, A knows values J, u, s, t, σ such that: (1)
S′ = Sgx1 = Fs(J)gx1 , (2) T ′ = Tgx2 = Ft(J)Rgx2 ,
and (3) VerifySig(pkB, (u, s, t), σ) = true.

Therefore, we can use A to create a proof Φ such
that the CHL bank accepts the coin (S, T, Φ, R). We
construct a reduction that breaks the security of the
CHL scheme by playing middleman in the Withdraw
and Deposit invocations that A makes. The reduction
can set up the public parameters for the endorsed e-
cash ZKPOK, and exploit them to extract the values
u, s, t, σ from A. As a result, it can construct a valid
CHL ZKPOK for coins that A tries to deposit.

Culpability and Exculpability. Since Reconstruct cre-
ates a coin (S, T, Φ′, R, (x1, x2, x3), y) where (S, T, R)
are the same as in the CHL system, the CHL
PublicSecurityProtocols can remain unchanged. There-
fore, culpability and exculpability are preserved.

3.4 On-line Endorsed E-cash

On-line e-cash lets merchants verify with a perma-
nently available (i.e., on-line) bank whether an e-coin
was previously spent. Double-spending is detected be-
fore it happens.

The Spend protocol would consist of three stages.
First, the user gives the merchant an e-coin serial num-
ber. Next the merchant verifies with the bank that the
e-coin has not yet been spent. Finally, the user and
merchant perform a fair exchange of the e-coin’s en-
dorsement and the promised good or service.

For the sake of efficiency, our on-line endorsed e-cash
system makes the user give the merchant the e-coin
serial number S in the clear before the start of the fair
exchange. This lets the bank quickly check whether
the e-coin has been spent. (If the user sent a blinded
version of the serial number, then he and the bank
would have to go through an onerous zero-knowledge
proof that the promised e-coin’s serial number is not in
the database of spent e-coins.) Unfortunately, the user
now sacrifices some anonymity because e-coins can be
linked to each other, if not the user.

We now describe the on-line endorsed e-cash Spend
protocol in detail.

The user sends S in the clear along with a timeout
value timeout that tells the bank when the unendorsed
coin expires. He also generates an endorsement x and
calculates y = φ(x). The user creates a signature V on
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(pkM, contract , y, timeout) using S as the verification
key (details later). Since the double-spending equation
T is no longer needed, the Withdraw protocol generates
a shorter wallet W = (J, u, s, σ).

Algorithm 3.3: SplitOnLineCoin
Input: pkM ∈ {0, 1}∗ merchant’s public key,

contract ∈ {0, 1}∗, timeout expiration
time

User Data: u private key, gu public key, (s, σ, J)
a wallet coin

x← Zq ;
y ← gx ;
S ← Fs(J) ;
R← pkM||contract ||y||timeout ;
V ← Sign(1/(J + s), R) ;
Calculate ZKPOK Φ′ of (J, u, s, σ, x) such that:

y = gx

0 ≤ J < n
S = Fs(J)
VerifySig(pkB, (u, s), σ) = true

return (S, Φ′, R, V, x, y)

We describe how a user calculates a coin in Algo-
rithm 3.4.1. All the global parameters are the same as
before. The unendorsed coin is (S, Φ′, R, V, y) and the
endorsement is x. The homomorphic one-way function
φ : Zq → G is defined as φ(x) = gx.

The function Sign ties R =
(pkM||contract ||y||timeout) to the serial number
of the coin. If we use the Dodis-Yampolskiy PRF,
then S = Fs(J) = g1/(1+s+J). We can sign R using
a discrete logarithm based signature scheme such as
Schnorr [Sch91] or DSS [Kra99] with 1/(1 + s + J) as
the secret key and S as the verification key. Alterna-
tively, we can use the even more efficient BLS [BLS01]
signature: The ZKPOK for the Dodis-Yampolskiy
PRF requires a bilinear map e : Ḡ × Ḡ → G and
publishing a proof π = ḡ1/(1+s+J). We can sign R
using 1/(1 + s + J) as the secret key and π as the
verification key.

The OnLineSpend protocol works as follows: The
user invokes SplitOnLineCoin to generate an endorsable
coin (S, Φ′, R, V, x, y) and gives (S, Φ′, R, V, y) to the
merchant. The merchant verifies the unendorsed coin
and takes it to the bank to reserve the coin until time-
out. The bank verifies that the unendorsed coin is valid.
Then it checks if S ∈ L∪L′, where L is the list of previ-
ously spent coins and L′ is the list of temporarily locked
serial numbers; if yes, this means the user is trying to
double-spend and the bank informs the merchant not
to accept the coin. If the unendorsed coin passes the
test, the bank notifies the merchant and adds S to L′.
If the merchant deposits the endorsed coin before time-

out then the bank transfers S from L′ to L. Otherwise,
merchant returns to deposit the coin, the bank simply
removes S from L′. It is the merchant’s responsibil-
ity to make sure the fair exchange resolves before the
timeout occurs and the user’s responsibility not to cre-
ate any unendorsed coins with the same serial number
until after timeout.

In off-line endorsed e-cash, a malicious TTP can
trick a user into double-spending by falsely claiming
a fair exchange terminated unsuccessfully. As a con-
sequence, when the user tries spending the wallet coin
a second time, the bank learns the user’s identity and
may even trace all of the other coins the user spent.
Even if the user later produces a certificate from the
TTP stating that the first exchange was supposed to
be aborted, the user’s privacy is already compromised.
In on-line e-cash, this is no longer an issue. The
user’s identity can never be revealed because there is
no double-spending equation. If the bank gets an en-
dorsed coin from a fair exchange that a TTP claimed
was aborted, then the user can resolve the issue anony-
mously by publishing the signed abort certificate.

On-line endorsed e-cash has roughly the same com-
munication cost as off-line endorsed e-cash. The
biggest difference is that the bank must store serial
numbers that might be used.

4 Endorsed E-Cash Protocols

Endorsed e-cash is better than standard e-cash be-
cause the lightweight structure of endorsements lends
it to many nice protocols. In this section, we describe
three such protocols: optimistic fair exchange of a sin-
gle endorsed e-coin for digital goods and services, ef-
ficient fair exchange of multiple coins, and threshold
secret sharing of endorsements.

4.1 Optimistic Fair Exchange of E-Cash
for Digital Goods

We want to be able to exchange e-cash for digital
content. We want the exchange to be fair: either the
user gets the digital content and the merchant gets an
e-coin or neither of them get anything. Asokan, Shoup
and Waidner [ASW00] present an optimistic fair ex-
change protocol for exchanging digital signatures for
digital goods with the help of a trusted third party
(TTP). It is optimistic in the sense that the TTP gets
involved only if either the user or the merchant violate
the protocol.

Suppose user Alice has a signature and merchant
Bob has the goods. The Asokan et al. protocol re-
quires Alice to reduce the promise of her signature to
the promise of a homomorphic pre-image. This is pre-
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cisely what endorsed e-cash does; to deposit an unen-
dorsed coin (φ, y, coin ′), Bob must get φ−1(y) from Al-
ice. Asokan et al. propose a way to reduce e-cash, how-
ever, their method creates linkable coins while SplitCoin
(see Section 3.2) generates independent coins.

Security: The Asokan et al. optimistic fair exchange
protocol requires a tagged, CCA2 secure, verifiable en-
cryption scheme for encrypting the pre-image of φ. In
Section 3.2, we use φ(a, b, c) = ha

1hb
2g

c; thus, we should
use the Camenisch and Shoup [CS03] verfiable encryp-
tion scheme. Its security is based on the Paillier As-
sumption, and the length of the proof is optimal. We
assume that φ is a one-way function, so we require the
discrete logarithm assumption.

As long as the TTP is honest, the exchange will be
fair. A dishonest TTP can cheat either party. Worse, a
malicious TTP can trick a user into double-spending by
falsely claiming that the exchange aborted. When the
user retries spending the wallet coin, the bank learns
the user’s identity and may even trace the user’s other
coins. Therefore, we require the TTP to give the user
and merchant signed “abort” certificates. A malicious
TTP can still compromise the user’s privacy, but at
least the certificate lets the user prove his innocense
and implicate the TTP.

4.2 Paying Multiple Coins

Suppose a merchant is selling a car for 19,995 e-coins
(an e-coin can be worth a dollar, or some other amount
if the system supports different denominations). If a
user wants to do a fair exchange, she must verifiably
encrypt 19,995 endorsements. Creating and verifying
the ciphertexts is computationally expensive. Worse, if
the trusted third party becomes involved, it must store
all of the verifiable encryptions and their tags.

We can significantly reduce the cost of the fair ex-
change. Examine the unendorsed coin (S′, T ′,Φ′, R, y)
from Section 3.2. The value y = φ(x1, x2, x3), where
(x1, x2, x3) is the endorsement. A fair exchange of one
coin for the car trades the opening of y for the opening
of some value K. A fair exchange of n unendorsed coins
trades the opening of (y(0), . . . , y(n−1)) for the opening
of K. Because φ is really a Pedersen commitment, we
can use a Pedersen VSS [Ped92] style algorithm to re-
duce opening all the y(i) to just opening y(0).

Setup: We will use the same public parameters as
the endorsed e-cash system in Section 3.2. For no-
tational convenience, we will use (g1, g2, g3) instead
of (h1, h2, g) (recall that these are three generators of
G whose discrete logarithm representation relative to
each other is unknown; we assume the discrete loga-
rithm problem is hard in G). Therefore, φ(a, b, c) =
ga
1gb

2g
c
3.

User Promise: The user makes n new endorsable

coins (S′(i), T ′(i),Φ′(i), R(i), (x(i)
1 , x

(i)
2 , x

(i)
3 ), y(i)), for

i ∈ [0, n − 1]. The user calculates three polynomials
f1, f2, f3 of degree n− 1, such that ∀i ∈ [0, n− 1],∀j ∈
{1, 2, 3} : fj(i) = x

(i)
j (this is a simple interpolation).

Let set A = {0, . . . , n − 1}. The user calculates n − 1
new points p

(i)
j on f1, f2 and f3, as follows:

∀i ∈ [n, 2n− 2],∀j ∈ {1, 2, 3} :

p
(i)
j = fj(i) =

∑
a∈A

fj(a)
∏
b∈A
b 6=a

i− a

b− a

The user gives the merchant the n unendorsed coins
and {p(i)

j : i ∈ [n, 2n− 2], j ∈ {1, 2, 3}}.
Merchant Verifies: The merchant gets n unendorsed

coins (S′(i), T ′(i),Φ′(i), R(i), y(i)), for i ∈ [0, n− 1], and
uses the Φ′(i) to verify their validity. Then the mer-
chant checks that the openings of the y(i) are on the
same polynomials as the p

(i)
j . He does not need to know

the openings for this! Let set B = {n, . . . , 2n−2}. The
merchant accepts only if:

∀i ∈ [1, n− 1] :

y(0) = (y(i))
∏

b∈B
i

i−b

3∏
j=1

(gj)

∑
a∈B

a
a−i pa

j

∏
b∈B
b 6=a

a
a−b

Fair Exchange: The merchant and the user conduct
an optimistic fair exchange of the opening of y(0) for
the opening of K. The merchant learns φ−1(y(0)) =
(x(0)

1 , x
(0)
2 , x

(0)
3 ). If the exchange fails, the user must

throw out the unendorsed coins.
Reconstruct: The merchant uses (x(0)

1 , x
(0)
2 , x

(0)
3 ) and

{p(i)
j : i ∈ [n, 2n − 2], j ∈ {1, 2, 3}} to learn the open-

ings of y(1), . . . , y(n−1). He sets C = {0, n, . . . , 2n− 2},
p
(0)
j = x

(0)
j , and calculates:

∀i ∈ [1, n− 1],∀j ∈ {1, 2, 3} :

x
(i)
j = fj(i) =

∑
a∈C

fj(a)
∏
b∈C
b 6=a

x− a

b− a

Theorem 4.1 (Multi-coin fair exchange is secure).
Suppose a group of malicious merchants asks a group
of honest users to engage in an arbitrary number of fair
exchange protocols. The users have access to an unlim-
mitted number of withdrawals from the bank. The mer-
chants can terminate the fair exchanges at any point.
If the users endorse N e-coins and the merchants with-
draw M e-coins from the bank, then the merchants can
deposit at most N + M e-coins.

Before proving Theorem 4.1, we first prove in
Lemma 4.2 that if a merchant endorses an e-coin during
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a single run of a failed multi-coin exchange, then he can
calculate discrete logarithms. Then we use Lemma 4.2
to show that if the merchants manage to deposit more
coins than the users intended to give him (and that
they withdrew from the bank), then the merchants vi-
olate either the security of the endorsed e-cash scheme
or the discerete logarithm assumption.

Lemma 4.2. Let (x(0)
1 , x

(0)
2 , x

(0)
3 ), . . . , (x(n−1)

1 , x
(n−1)
2 ,

x
(n−1)
3 ) be numbers in Zp selected at random, and

let g1, g2, g3 be generators of a group G. We de-
fine the function φ(a, b, c) = ga

1gb
2g

c
3 and calculate

y(0), . . . , y(n−1), such that yi = φ(x(i)
1 , x

(i)
2 , x

(i)
3 ). In ad-

dition, the x
(i)
j define three polynomials f1, f2, f3 such

that fj(i) = x
(i)
j for 0 ≤ i ≤ n − 1. We calcu-

late n − 1 points on each of these three polynomials:
{p(i)

j = fj(i) : i ∈ [n, 2n − 2], j ∈ {1, 2, 3}}. Suppose
there exists an adversary that on input G, g1, g2, g3,
(y(0), . . . , y(n−1)), and {p(i)

j = fj(i) : i ∈ [n, 2n−2], j ∈
{1, 2, 3}} outputs (a, b, c) such that y(i) = φ(a, b, c), for
some i ∈ [0, n− 1]. Then we can use this adversary to
calculate discrete logarithms in G.

Proof. We construct a reduction that uses the adver-
sary from Lemma 4.2 as a black-box to calculate dis-
crete logarithms. The reduction gets y as input. Sup-
pose (x1, x2, x3) is the opening of y; the reduction
does not know these values, but it constructs three
polynomials f1, f2, f3 so that fj(0) = xj . First the
reduction randomly chooses 3(n − 1) numbers in Zp:
{p(i)

j : i ∈ [n, 2n − 2], j ∈ {1, 2, 3}}; these will be ran-
dom points that, along with the (unknown) opening of
y, define the polynomials f1, f2, f3. Then the reduction
calculates y(1), . . . , y(n−1). Let S = [n, 2n− 1], then:

∀i ∈ [1, n− 1] :

y(i) = y
∏

b∈S
i
b

3∏
j=1

(gj)

∑
a∈S pa

j

∏
b∈S∪{0}

b 6=a

i−a
b−a

The reduction passes (y, y(1), . . . , y(n−1)) and {p(i)
j : i ∈

[n, 2n − 2], j ∈ {1, 2, 3}} to the black-box. The black-
box responds with an opening to one of the y(i). From
this the reduction can interpolate the polynomials and
open y.

Proof of Theorem 4.1. We now show that no merchant
can take advantage of the multi-coin fair exchange pro-
tocol to deposit more coins than the honest users in-
tended to give him. Suppose a group of dishonest
merchants, after withdrawing M e-coins and running
a number of multi-coin fair exchanges in which only
N coins should be endorsed, manages to deposit more
than M +N coins. Then we can construct a reduction

that uses the merchants as a black-box to either break
the balance or anonymity properties of the endorsed
e-cash scheme, or to calculate discrete logarithms.

The reduction gets y as input and needs to out-
put (x1, x2, x3) such that y = hx1

1 hx2
2 gx3 . The

reduction sets up an endorsed e-cash system, us-
ing (h1, h2, g) as the public parameters. It also
uses SZK , the simulator for the zero-knowledge sys-
tem Φ′ to create (paramsZK , auxsimZK) and SCHL,
the simulator for the CHL e-cash system to create
(paramsCHL, auxsimCHL).

The reduction runs multi-coin fair exchanges with
the merchant. In one of those exchanges (the reduction
chooses which one at random), the reduction inserts y
into an unendorsed coin. Suppose a merchant wants
n coins. Then the reduction prepares the input to the
merchant as follows: It asks SCHL to create n e-coins
(S(i), T (i),Φ(i), R(i)) (the reduction runs Withdraw and
Spend the appropriate amount of times). Then the
reduction uses y to create an unendorsed coin. It ran-
domly chooses r1 and r2 and calculates S′ = Sgr1 and
T ′ = Tgr2 (we need to blind S and T ; we don’t know
any valid openings of y, but for any r1 and r2 we choose,
there exists some r3 such that φ(r1, r2, r3) = y). Then
it uses SZK to generate a fake proof Φ′ such that
an honest merchant would accept the unendorsed coin
coin ′(0) = (S′(0), T ′(0),Φ′(0), R′(0), y). Next the reduc-
tion chooses the random points on three polynomials:
{p(i)

j : i ∈ [n, 2n − 2], j ∈ {1, 2, 3}}. Finally, the re-
duction chooses the appropriate y(1), . . . , y(n−1) (us-
ing the same method as in the proof of Lemma 4.2)
and uses SCHL and SZK to create the unendorsed
coins coin ′(1), . . . , coin ′(n−1). The reduction gives
coin ′(0), . . . , coin ′(n−1) and {p(i)

j : i ∈ [n, 2n − 2], j ∈
{1, 2, 3}} to the merchant.

Eventually, the merchants output a list of more than
M + N coins for deposit. At least one of these coins
must be fake. If it is an entirely new coin then the
merchant violated the balance property of the endorsed
e-cash scheme. The only other possibility is that the
coin was from a terminated multi-coin fair exchange.
With non-negligible probability, the reduction would
have inserted y into that fair exchange. In this case,
by Lemma 4.2, the merchants violated the discrete log-
arithm assumption. If the merchants fail to output
more than M + N coins, then the merchants violated
anonymity because they distinguished the simulator
from real users (this can be shown with a straightfor-
ward reduction).

4.3 Threshold Endorsed E-cash

Sometimes, such as in our onion routing example,
we want to require the merchant to acquire several en-
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dorsements before reconstructing an e-coin. In this sec-
tion, we construct a threshold endorsed e-cash system
where the merchant needs to get m out of n possible
endorsements.

An unendorsed coin consists of (S′, T ′,Φ′, R, y),
where y = Ped(x1, x2;x3). We can use Pedersen
Verifiable Secret Sharing [Ped92] to create shares of
the endorsement. For notational convenience, we use
(g1, g2, g3) instead of original parameters (h1, h2, g) in
Section 3.2.

To share (x1, x2, x3), the user generates three ran-
dom polynomials f1, f2, f3 of degree m − 1 such that
fj(0) = xj . The user stores a secret vector of n points
on the polynomial; these points are the endorsements.
The user gives the merchant commitments to the co-
efficients that define the polynomials. Once the mer-
chant learns m points on the polynomials, he can re-
cover (x1, x2, x3) and endorse the coin. Algorithm 4.1
describes how the user creates a threshold endorsable
coin.

Algorithm 4.1: SplitCoinMN
Input: pkM ∈ {0, 1}∗ merchant’s public key,

contract ∈ {0, 1}∗
User Data: u private key, gu public key,

(s, t, σ, J) a wallet coin
(S′, T ′,Φ′, R, (x1, x2, x3), y)←
SplitCoin(pkM, contract) ;
aj,0 ← xj ,∀j ∈ {1, 2, 3} ;
aj,k ← Zp,∀j ∈ {1, 2, 3},∀k ∈ [1,m− 1] ;
Z ← {Zk =

∏3
j=1 g

aj,k

j : k ∈ [0,m− 1]} ;

X ← {X(i)
j =

∑m−1
k=0 aj,kik : j ∈ {1, 2, 3}, i ∈

[0, n]} ;
return (S′, T ′,Φ′, R, X, Z)

In MNSpend, the user gives the merchant the thresh-
old unendorsed coin (S′, T ′,Φ′, R, Z) and stores the en-
dorsement X. The merchant needs to verify the unen-
dorsed coin: he uses uses Z, a commitment to the poly-
nomials’ coefficients, to calculate Y , a commitment to
points on the polynomials: Y = {Y (i) =

∏m−1
k=0 (Zk)ik

:
i ∈ [0, n]}. The merchant sets y = Y (0) and verifies Φ′

in the usual way.
Now the merchant needs to get m endorsements.

The user has n endorsements: {(X(i)
1 , X

(i)
2 , X

(i)
3 ) : i ∈

[1, n]}. They can use the homomorphic one-way func-
tion φ(a, b, c) = ga

1gb
2g

c
3 to do an optimistic fair ex-

change because φ(X(i)
1 , X

(i)
2 , X

(i)
3 ) = Y (i) (remember,

Φ′ proves the Y (i) are correct). In MNReconstruct, the
merchant uses the m points to interpolate the polyno-
mials and learn (x1, x2, x3).

Security: this is a straightforward application of
Pedersen VSS. The user creates n verifiable shares of

the secret (x1, x2, x3) and gives the merchant the stan-
dard verification vector. Each endorsement is a share
of the secret.

5 Conclusion

We have shown how to perform truly fair exchange
of off-line and on-line e-cash for digital goods and ser-
vices. We provide a new protocol for efficiently ex-
changing multiple e-coins simultaneously; this proto-
col can be applied to fair exchange of any secret that
lends itself to Pedersen commitments. Our threshold
endorsed e-cash allows exchanging a single e-coin for
multiple goods and services. By reducing the exchange
of e-cash to the exchange of lightweight endorsements,
we make it possible to apply many (efficient) standard
cryptographic techniques to e-commerce.
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