
Billion-Gate Secure Computation with Malicious Adversaries

Benjamin Kreuter
brk7bx@virginia.edu
University of Virginia

abhi shelat
abhi@virginia.edu

University of Virginia

Chih-hao Shen
cs6zb@virginia.edu

University of Virginia

Abstract

The goal of this paper is to assess the feasibility of
two-party secure computation in the presence of a ma-
licious adversary. Prior work has shown the feasibil-
ity of billion-gate circuits in the semi-honest model, but
only the 35k-gate AES circuit in the malicious model,
in part because security in the malicious model is much
harder to achieve. We show that by incorporating the
best known techniques and parallelizing almost all steps
of the resulting protocol, evaluating billion-gate circuits
is feasible in the malicious model. Our results are in
the standard model (i.e., no common reference strings
or PKIs) and, in contrast to prior work, we do not use the
random oracle model which has well-established theoret-
ical shortcomings.

1 Introduction

Protocols for secure computation allow two or more mu-
tually distrustful parties to collaborate and compute some
function on each other’s inputs, with privacy and correct-
ness guarantees. Andrew Yao showed that secure two-
party protocols can be constructed for any computable
function [33]. Yao’s protocol involves representing the
function as a boolean circuit and having one party (called
the generator) encrypt the circuit in such a way that it
can be selectively decrypted by the other party (called
the evaluator) to compute the output, a process called
garbling. In particular, oblivious transfers are used for
the evaluator to obtain a subset of the decryption keys
that are needed to compute the output of the function.

Yao’s protocol is of great practical significance. In
many real-world situations, the inputs to a function may
be too valuable or sensitive to share. Huang et al. ex-
plored the use of secure computation for biometric iden-
tification [14] in national security applications, in which
it is desirable for individual genetic data to be kept pri-
vate but still checked against a classified list. In a similar

security application, Osadchy et al. described how face
recognition could be performed in a privacy-preserving
manner [29]. The more general case of multiparty com-
putation has already seen real-world use in computing
market clearing prices in Denmark [2].

Yao’s original protocol ensures the privacy of each
party’s input and the correctness of the output under the
semi-honest model, in which both parties follow the pro-
tocol honestly. This model has been the basis for sev-
eral scalable secure computation systems [4, 10, 12, 13,
17, 22, 26]. It is conceivable, however, that one of the
parties may deviate from the protocol in an attempt to
violate privacy or correctness. Bidders may attempt to
manipulate the auction output in their favor; spies may
attempt to obtain sensitive information; and a computer
being used for secure computation may be infected with
malware. Securing against malicious participants, who
may deviate arbitrarily from pre-agreed instructions, in
an efficient manner is of more practical importance.

There have been several attempts on practical systems
with security against active, malicious adversaries. Lin-
dell and Pinkas presented an approach based on garbled
circuits that uses the cut-and-choose technique [23], with
an implementation of this system having been given by
Pinkas et al. [30]. Nielsen et al. presented the LEGO+
system [28], which uses efficient oblivious transfers and
authenticated bits to enforce honest behaviors from par-
ticipants. shelat and Shen proposed a hybrid approach
that integrates sigma protocols into the cut-and-choose
technique [32]. The protocol compiler presented by
Ishai, Prabhakaran, and Sahai [16] also uses an approach
based on oblivious transfer, and was implemented by
Lindell, Oxman, and Pinkas [21]. In all these cases, AES
was used as a benchmark for performance tests.

Protocols for general multiparty computation with se-
curity against a malicious majority have also been pre-
sented. Canetti et al. gave a construction of a uni-
versally composable protocol in the common reference
string model [5]. The protocol compiler of Ishai et al.,

mentioned above, can be used to construct a multiparty
protocol with security against a dishonest majority in the
UC model [16]. Bendlin et al. showed a construction
based on homomorphic encryption [1], which was im-
proved upon by Damgård et al. [7]; these protocols were
also proved secure in the UC model, and thus require ad-
ditional setup assumptions. The protocol of Damgård et
al. (dubbed “SPDZ” and pronounced “speedz”) is based
on a preprocessing model, which improves the amortized
performance. Damgård et al. presented an implementa-
tion of their protocol, which could evaluate the function
(x× y) + z in about 3 seconds with a 128 bit security
level, but with an amortized time of a few milliseconds.

This paper presents a scalable two-party secure com-
putation system which guarantees privacy and correct-
ness in the presence of a malicious party. The system
we present can handle circuits with hundreds of millions
or even billions of gates, while requiring relatively mod-
est computing resources. Our system follows the Fair-
play framework, allowing general purpose secure com-
putation starting from a high level description of a func-
tion. We present a system with numerous technical ad-
vantages over the Fairplay system, both in our compiler
and in the secure computation protocol. Unlike previ-
ous work, we do not rely solely on AES circuits as our
benchmark; our goal is to evaluate circuits that are orders
of magnitude larger than AES in the malicious model,
and we use AES only as a comparison with other work.
We prove the security of our protocol assuming circular
2-correlation robust hash functions and the hardness of
the elliptic curve discrete logarithm problem, and require
neither additional setup assumptions nor the random or-
acle model.

2 Contributions

Our principal contribution is to build a high perfor-
mance secure two-party computation system that inte-
grates state-of-the-art techniques for dealing with ma-
licious adversaries efficiently. Although some of these
techniques have been reported individually, we are not
aware of any attempt to incorporate them all into one sys-
tem, while ensuring that a security proof can still be writ-
ten for that system. Even though some of the techniques
are claimed to be compatible, it is not until everything is
put together and someone has gone through all the details
can a system as a whole be said to be provably secure.

System Framework We start by using Yao’s garbled
circuit [33] protocol for securely computing functions
in the presence of semi-honest adversaries, and she-
lat and Shen’s cut-and-choose-based transformation [32]
that converts Yao’s garbled circuit protocol into one that

is secure against malicious adversaries.
We then modify the above to use Ishai et al.’s obliv-

ious transfer extension [15] that has efficient amortized
computation time for oblivious transfers secure against
malicious adversaries, and Lindell and Pinkas’ random
combination technique [23] that defends against selec-
tive failure attacks. We implement Kiraz’s randomized
circuit technique [18] that guarantees that the generator
gets either no output or an authentic output, i.e., the gen-
erator cannot be tricked into accepting arbitrary output.

Optimization Techniques For garbled circuit gener-
ation and evaluation, we incorporate Kolesnikov and
Schneider’s free-XOR technique that minimizes the
computation and communication cost for XOR gates in
a circuit [20]. We also adopt Pinkas et al.’s garbled-row-
reduction technique that reduces the communication cost
for k-fan-in non-XOR gates by 1/2k [30], which means
at least a 25% communication saving in our system since
we only have gates of 1-fan-in or 2-fan-in. Finally, we
implement Goyal et al.’s technique for reducing commu-
nication as follows: during the cut-and-choose step, the
check circuits are given to the evaluator by revealing the
random seeds used to produce them rather than the check
circuits themselves [11]. Combined with the 60%-40%
check-evaluation ratio proposed by shelat and Shen [32],
this technique provides a near 60% saving in communi-
cation. As far as we know, although these techniques ex-
ist individually, ours is the first system to incorporate all
of these mutually compatible state-of-the-art techniques.

Circuit-Level Parallelism The most important new
technique that we use is to exploit the embarrassingly
parallel nature of shelat and Shen’s protocol for achiev-
ing security in the malicious model. Exploiting this,
however, requires careful engineering in order to achieve
good performance while maintaining security. We paral-
lelize all computation-intensive operations such as obliv-
ious transfers or circuit construction by splitting the
generator-evaluator pair into hundreds of slave pairs.
Each of the pairs works on an independently generated
copy of the circuit in a parallel but synchronized man-
ner as synchronization is required for shelat and Shen’s
protocol [32] to be secure.

Computation Complexity For the computation time
of a secure computation, there are two main contribut-
ing factors: the input processing time I (due to oblivi-
ous transfers) and the circuit processing time C (due to
garbled circuit construction and evaluation). In the semi-
honest model, the system’s computation time is simply
I+C. Security in the malicious model, however, requires
several extra checks. In the first instantiation of our sys-

tem, through heavy use of circuit-level parallelism, our
system needs roughly I + 2C to compute hundreds of
copies of the circuit. Thus when the circuit size is suf-
ficiently larger than the input size, our system (secure in
the malicious model) needs roughly twice as much com-
putation time as that needed by the original Yao proto-
col (secure in the semi-honest model). This is a tremen-
dous improvement over prior work [30,32] which needed
100x more time than the semi-honest Yao. In the second
instantiation of our scheme, we are able to achieve I +C
computation time, albeit at the cost of moderately more
communication overhead.

Large Circuits In the Fairplay system, a garbled cir-
cuit is fully constructed before being sent over a net-
work for the other party to evaluate. This approach is
particularly problematic when hundreds of copies of a
garbled circuit are needed against malicious adversaries.
Huang et al. [13] pointed out that keeping the whole gar-
bled circuit in memory is unnecessary, and that instead,
the generation and evaluation of garbled gates could be
conducted in a “pipelined” manner. Consequently, not
only do both parties spend less time idling, only a small
number of garbled gates need to reside in memory at one
time, even when dealing with large circuits. However,
this pipelining idea does not work trivially with other op-
timization techniques for the following two reasons:

• The cut-and-choose technique requires the gener-
ator to finish constructing circuits before the coin
flipping (which is used to determine check circuits
and evaluation circuits), but the evaluator cannot
start checking or evaluating before the coin flipping.
A naive approach would ask the evaluator to hold
the circuits and wait for the results of the coin flip-
ping before she proceeds to do her jobs. When the
circuit is of large size, keeping hundreds of copies
of such a circuit in memory is undesirable.

• Similarly, the random seed checking technique [11]
requires the generator to send the hash for each gar-
bled circuit, and later on send the random seeds for
check circuits so that the communication for check
circuits is vastly reduced. Note that the hash for an
evaluation circuit is given away before the garbled
circuit itself. However, a hash is calculated only af-
ter the whole circuit is generated. So the generation-
evaluation pipelining cannot be applied directly.

Our system, however, integrates this pipelining idea with
the optimization techniques mentioned above, and is ca-
pable of handling circuits of billions of gates.

AES-NI Besides the improvements by the algorith-
mic means, we also incorporate the Intel Advanced En-

cryption Standard Instructions (AES-NI) in our system.
While the encryption is previously suggested to be

EncX ,Y (Z) = H(X ||Y)⊕Z

in the literature [6, 20], where H is a 2-circular correla-
tion robust function instantiated either with SHA-1 [13]
or SHA-256 [30], we propose an alternative that

Enck
X ,Y (Z) = AES-256X ||Y (k)⊕Z,

where k is the index of the garbled gate. With the help
of the latest instruction set, an AES-256 operation could
take as little as 30% of the time for SHA-256. Since this
operation is heavily used in circuit operations, with the
help of AES-NI instructions, we are able to reduce the
circuit computation time C by at least 20%.

Performance To get a sense of our improvements, we
list the experimental results of the benchmark function—
AES—from the most recent literature and our system.
The latest reported system in the semi-honest model was
built by Huang et al. [13] and needs 1.3 seconds (where
I = 1.1 and C = 0.2) to complete a block of secure AES
computation. The fastest known system in the malicious
model was proposed by Nielson et al. [28] and has an
amortized performance 1.6 seconds per block (or more
precisely, I = 79 and C = 6 for 54 blocks). Our system
provides security in the malicious model and needs 1.4
(= I+2C, where I = 1.0 and C = 0.2) seconds per block.
Note that both the prior systems require the full power
of a random oracle, while ours requires a weaker crypto-
graphic primitive, 2-circular correlation robust functions,
which was recently shown to be sufficient to prove the
security of the free-XOR technique. It should also be
noted that our system benefits greatly from parallel com-
putation, which was not tested for LEGO+.

Scalable Circuit Compiler One of the major bottle-
necks that prevents large-scale secure computation is the
need for a scalable compiler that generates a circuit de-
scription from a function written in a high-level program-
ming language. Prior tools could barely handle circuits
with 50,000 gates, requiring significant computational
resources to compile such circuits. While this is just
enough for an AES circuit, it is not enough for the large
circuits that we evaluate in this paper.

We present a scalable boolean circuit compiler that
can be used to generate circuits with billions of gates,
with moderate hardware requirements. This compiler
performs some simple but highly effective optimizations,
and tends to favor XOR gates. The toolchain is flexible,
allowing for different levels of optimizations and can be
parameterized to use more memory or more CPU time
when building circuits.

As a first sign that our compiler advances the state
of the art, we observe that it automatically generates a
smaller boolean circuit for the AES cipher than the hand-
optimized circuit reported by Pinkas et al. [30]. AES
plays an important role in secure computation, and obliv-
ious AES evaluation can be used as a building block in
cryptographic protocols. Not only is it one of the most
popular building blocks in cryptography and real life se-
curity, it is often used as a benchmark in secure com-
putation. With the textbook algorithm, the well-known
Fairplay compiler can generate an AES circuit that has
15,316 non-XOR gates. Pinkas et al. were able to de-
velop an optimized AES circuit that has 11,286 non-
XOR gates. By applying an efficient S-box circuit [3]
and using our compiler, we were able to construct an
AES circuit that has 9,100 non-XOR gates. As a result,
our AES circuit only needs 59% and 81% of the commu-
nication needed by the other two, respectively.

Most importantly, with our system and the scalable
compiler, we are able to run experiments on circuits with
sizes in the range of billions of gates. To the best of
our knowledge, secure computation with such large cir-
cuits has never been run in the malicious model before.
These circuits include 256-bit RSA (266,150,119 gates)
and 4095x4095-bit edit distance (5,901,194,475). As the
circuit size grows, resource management becomes cru-
cial. A circuit of billions of gates can easily result in
several GB of data stored in memory or sent over the
network. Special care is required to handle these diffi-
culties.

Paper Organization The organization of this paper is
as follows. A variety of security decisions and optimiza-
tion techniques will be covered in Section 3 and Sec-
tion 4, respectively. Then, our system, including a com-
piler, will be introduced in Section 5. Finally, the experi-
mental results are presented in Section 6 followed by the
conclusion and future work in Section 7.

3 Techniques Regarding Security

The Yao protocol, while efficient, assumes honest behav-
ior from both parties. To achieve security in the mali-
cious model, it is necessary to enforce honest behavior.
The cut-and-choose technique is one of the most efficient
methods in the literature and is used in our system. Its
main idea is for the generator to prepare multiple copies
of the garbled circuit with independent randomness, and
the evaluator picks a random fraction of the received cir-
cuits, whose randomness is then revealed. If any of the
chosen circuits (called check circuits) is not consistent
with the revealed randomness, the evaluator aborts; oth-
erwise, she evaluates the remaining circuits (called eval-

uation circuits) and takes the majority of the outputs, one
from each evaluation circuit, as the final output.

The intuition is that to pass the check, a malicious gen-
erator can only sneak in a few faulty circuits, and the
influence of these (supposedly minority) faulty circuits
will be eliminated by the majority operation at the end.
On the other hand, if a malicious generator wants to ma-
nipulate the final output, she needs to construct faulty
majority among evaluation circuits, but then the chance
that none of the faulty circuits is checked will be negli-
gible. So with the help of the cut-and-choose method,
a malicious generator either constructs many faulty cir-
cuits and gets caught with high probability, or constructs
merely a few and has no influence on the final output.

However, the cut-and-choose technique is not a cure-
all. Several subtle attacks have been reported and would
be a problem if not properly handled. These attacks in-
clude the generator’s input inconsistency attack, the se-
lective failure attack, and the generator’s output authen-
ticity attack, which are discussed in the following sec-
tions. Note that in this section, n denotes the input size
and s denotes the number of copies of the circuit.

Generator’s Input Consistency Recall that in the cut-
and-choose step, multiple copies of a circuit are con-
structed and then evaluated. A malicious generator
is therefore capable of providing altered inputs to dif-
ferent evaluation circuits. It has been shown that for
some functions, there are simple ways for the gen-
erator to extract information about the evaluator’s in-
put [23]. For example, suppose both parties agree
to compute the inner-product of their input, that is,
f ([a2,a1,a0], [b2,b1,b0]) 7→ a2b2 +a1b1 +a0b0 where ai
and bi is the generator’s and evaluator’s i-th input bit,
respectively. Instead of providing [a2,a1,a0] to all eval-
uation circuits, the generator could send [1,0,0], [0,1,0],
and [0,0,1] to different copies of the evaluation circuits.
After the majority operation from the cut-and-choose
technique, the generator learns major(b2,b1,b0), the ma-
jority bit in the evaluator’s input, which is not what the
evaluator agreed to reveal in the first place.

There exist several approaches to deter this attack.
Mohassel and Franklin [27] proposed the equality-
checker that needs O(ns2) commitments to be computed
and exchanged. Lindell and Pinkas [23] developed an
approach that also requires O(ns2) commitments. Later,
Lindell and Pinkas [24] proposed a pseudorandom syn-
thesizer that relies on efficient zero-knowledge proofs
for specific hardness assumptions and requires O(ns)
group operations. shelat and Shen [32] suggested the
use of malleable claw-free collections, which also uses
O(ns) group operations, but they showed that witness-
indistinguishability suffices, which is more efficient than
zero-knowledge proofs by a constant factor.

In our system, we incorporate the malleable claw-free
collection approach because of its efficiency. Although
the commitment-based approaches can be implemented
using lightweight primitives such as collision-resistant
hash functions, they incur high communication overhead
for the extra complexity factor s, that is, the number of
copies of the circuit. On the other hand, the group-based
approach could be more computationally intensive, but
this discrepancy is compensated again due to the param-
eter s.1 Hence, with similar computation cost, group-
based approaches enjoy lower communication overhead.

Selective Failure A more subtle attack is selective fail-
ure [19, 27]. A malicious generator could use inconsis-
tent keys to construct the garbled gate and OT so that
the evaluator’s input can be inferred from whether or not
the protocol completes. In particular, a cheating genera-
tor could assign (K0,K1) to an input wire in the garbled
circuit while using (K0,K∗1) instead in the corresponding
OT, where K1 6= K∗1 . As a result, if the evaluator’s input
is 0, she learns K0 from OT and completes the evalu-
ation without complaints; otherwise, she learns K∗1 and
gets stuck during the evaluation. If the protocol expects
the evaluator to share the result with the generator at the
end, the generator learns whether or not the evaluation
failed, and therefore, the evaluator’s input is leaked.

Lindell and Pinkas [23] proposed the random input re-
placement approach that involves replacing each of the
evaluator’s input bits with an XOR of s additional in-
put bits, so that whether the evaluator aborts due to a se-
lective failure attack is almost independent (up to a bias
of 21−s) of her actual input value. Both Kiraz [18] and
shelat and Shen [32] suggested a solution that exploits
committing OTs so that the generator commits to her in-
put for the OT, and the correctness of the OTs can later
be checked by opening the commitments during the cut-
and-choose. Lindell and Pinkas [24] also proposed a so-
lution to this problem using cut-and-choose OT, which
combines the OT and the cut-and-choose steps into one
protocol to avoid this attack.

Our system is based on the random input replacement
approach due to its scalability. It is a fact that the com-
mitting OT or the cut-and-choose OT does not alter the
circuit while the random input replacement approach in-
flates the circuit by O(sn) additional gates. However,
it has been shown that max(4n,8s) additional gates suf-
fice [30]. Moreover, both the committing OT and the cut-

1To give concrete numbers, with an Intel Core i5 processor and
4GB DDR3 memory, a SHA-256 operation (from OpenSSL) requires
1,746 cycles, while a group operation (160-bit elliptic curve from the
PBC library with preprocessing) needs 322,332 cycles. It is worth-
mentioning that s is at least 256 in order to achieve security level 2−80.
The gap between a symmetric operation and an asymmetric one be-
comes even smaller when modern libraries such as RELIC are used
instead of PBC.

and-choose OT require O(ns) group operations, while
the random input replacement approach needs only O(s)
group operations. Furthermore, we observe that the ran-
dom input replacement approach is in fact compatible
with the OT extension technique. Therefore, we were
able to build our system which has the group operation
complexity independent of the evaluator’s input size, and
as a result, our system is particularly attractive when han-
dling a circuit with a large evaluator input.

Generator’s Output Authenticity It is not uncommon
that both the generator and evaluator receive outputs
from a secure computation, that is, the goal function is
f (x,y) = (f1, f2), where the generator with input x gets
output f1, and the evaluator with input y gets f2.2 In
this case, the security requires that both the input and
output are hidden from each other. In the semi-honest
setting, the straightforward solution is to let the gener-
ator choose a random number c as an extra input, con-
vert f (x,y) = (f1, f2) into a new function f ∗((x,c),y) =
(λ ,(f1⊕c, f2)), run the original Yao protocol for f ∗, and
instruct the evaluator to pass the encrypted output f1⊕ c
back to the generator, who can then retrieve her real out-
put f1 with the secret input c chosen in the first place.
However, the situation gets complicated when either of
the participants could potentially be malicious. In partic-
ular, a malicious evaluator might claim an arbitrary value
to be the generator’s output coming from the circuit eval-
uation. Note that the two-output protocols we consider
are not fair since the evaluator always learns her own out-
put and may refuse to send the generator’s output. How-
ever, they can satisfy the notion that the evaluator cannot
trick the generator into accepting arbitrary output.

Many approaches have been proposed to ensure the
generator’s output authenticity. Lindell and Pinkas [23]
proposed a solution similar to the aforementioned so-
lution in the semi-honest setting, where the goal func-
tion is modified to compute f1⊕ c and its MAC so that
the generator can verify the authenticity of her output.
This approach incurs a cost of adding O(n2) gates to
the circuit. Kiraz [18] presented a two-party computa-
tion protocol in which a zero knowledge proof of size
O(s) is conducted at the end. shelat and Shen [32] sug-
gested a signature-based solution which, similar to Ki-
raz’s, adds n gates to the circuit, and requires a proof of
size O(s+ n) at the end. However, they observed that
witness-indistinguishable proofs are sufficient.

Lindell and Pinkas’ approach, albeit straightforward,
might introduce greater communication overhead than
the description function itself. We therefore employ the
approach that takes the advantages of the remaining two
solutions. In particular, we implement Kiraz’s approach

2Here f1 and f2 are short for f1(x,y) and f2(x,y) for simplicity.

(smaller proof size), but only a witness-indistinguishable
proof is performed (weaker security property).

4 Techniques Regarding Performance

Yao’s garbled circuit technique has been studied for
decades. It has drawn significant attention for its sim-
plicity, constant round complexity, and computational ef-
ficiency (since circuit evaluation only requires fast sym-
metric operations). The fact that it incurs high communi-
cation overhead has provoked interest that has led to the
development of fruitful results.

In this section, we will first briefly present the Yao
garbled circuit, and then discuss the optimization tech-
niques that greatly reduce the communication cost while
maintaining the security. These techniques include free-
XOR, garbled row reduction, random seed checking, and
large circuit pre-processing. In addition to these original
ideas, practical concerns involving large circuits and par-
allelization will be addressed.

4.1 Baseline Yao’s Garbled Circuit
Given a circuit that consists of 2-fan-in boolean gates,
the generator constructs a garbled version as follows: for
each wire w, the generator picks a random permutation
bit πw ∈ {0,1} and two random keys w0,w1 ∈ {0,1}k−1.
Let W0 = w0||πw and W1 = w1||(πw⊕ 1), which are as-
sociated with bit value 0 and 1 of wire w, respectively.
Next, for gate g ∈ { f | f : {0,1}×{0,1} 7→ {0,1}} that
has input wire x with (X0,X1,πx), input wire y with
(Y0,Y1,πy), and output wire z with (Z0,Z1,πz), the gar-
bled truth table for g has four entries:

GT Tg

Enc(X0⊕πx ||Y0⊕πy , Zg(0⊕πx,0⊕πy))

Enc(X0⊕πx ||Y1⊕πy , Zg(0⊕πx,1⊕πy))

Enc(X1⊕πx ||Y0⊕πy , Zg(1⊕πx,0⊕πy))

Enc(X1⊕πx ||Y1⊕πy , Zg(1⊕πx,1⊕πy)).

Enc(K,m) denotes the encryption of message m under
key K. Here the encryption key is a concatenation of two
labels, and each label is a random key concatenated with
its permutation bit. Intuitively, πx and πy permute the
entries in GT Tg so that for ix, iy ∈ {0,1}, the (2ix + iy)-th
entry represents the input pair (ix⊕πx, iy⊕πy) for gate g,
in which case the label associated with the output value
g(ix⊕πx, iy⊕πy) could be retrieved. More specifically,
to evaluate the garbled gate GT Tg, suppose X ||bx and
Y ||by are the retrieved labels for input wire x and wire
y, respectively, the evaluator will use X ||bx||Y ||by to de-
crypt the (2bx + by)-th entry in GT Tg and retrieve label
Z||bz, which is then used to evaluate the gates at the next
level. The introduction of the permutation bit helps to
identify the correct entry in GT Tg, and thus, only one,
rather than all, of the four entries will be decrypted.

4.2 Free-XOR
Kolesnikov and Schneider [20] proposed the free-XOR
technique that aims for removing the communication
cost and decreasing the computation cost for XOR gates.

The idea is that the generator first randomly picks a
global key R, where R = r||1 and r ∈ {0,1}k−1. This
global key has to be hidden from the evaluator. Then
for each wire w, instead of picking both W0 and W1 at
random, only one is randomly chosen from {0,1}k, and
the other is determined by Wb = W1⊕b ⊕ R. Note that
πw remains the rightmost bit of W0. For an XOR gate
having input wire x with (X0,X0 ⊕ R,πx), input wire y
with (Y0,Y0⊕R,πy), and output wire z, the generator lets
Z0 = X0⊕Y0 and Z1 = Z0⊕R. Observe that

X0⊕Y1 = X1⊕Y0 = X0⊕Y0⊕R = Z0⊕R = Z1

X1⊕Y1 = X0⊕R⊕Y0⊕R = X0⊕Y0 = Z0.

This means that while evaluating an XOR gate, XORing
the labels for the two input wires will directly retrieve
the label for the output wire. So no garbled truth table
is needed, and the cost of evaluating an XOR gate is re-
duced from a decryption operation to a bitwise XOR.

This technique is only secure when the encryption
scheme satisfies certain security properties. The solution
provided by the authors is

Enc(X ||Y,K) = H(X ||Y)⊕Z,

where H : {0,1}2k 7→ {0,1}k is a random oracle. Re-
cently, Choi et al. [6] have further shown that it is
sufficient to instantiate H(·) with a weaker crypto-
graphic primitive, 2-circular correlation robust func-
tions. Our system instantiates this primitive with
H(X ||Y) = SHA-256(X ||Y). However, when AES-NI
instructions are available, our system instantiates it with
Hk(X ||Y) =AES-256(X ||Y,k), where k is the gate index.

4.3 Garbled Row Reduction
The GRR (Garbled Row Reduction) technique suggested
by Pinkas et al. [30] is used to reduce the communication
overhead for non-XOR gates. In particular, it reduces the
size of the garbled truth table for 2-fan-in gates by 25%.

Recall that in the baseline Yao’s garbled circuit, both
the 0-key and 1-key for each wire are randomly chosen.
After the free-XOR technique is integrated, the 0-key and
1-key for an XOR gate’s output wire depend on input key
and R, but the 0-key for a non-XOR gate’s output wire is
still free. The GRR technique is to make a smart choice
for this degree of freedom, and thus, reduce one entry in
the garbled truth table to be communicated over network.

In particular, the generator picks (Z0,Z1,πz) by letting
Zg(0⊕πx,0⊕πy) = H(X0⊕πx ||Y0⊕πy), that is, either Z0 or Z1

is assigned to the encryption mask for the 0-th entry of
the GT Tg, and the other one is computed by the equa-
tion Zb = Z1⊕b⊕R. Therefore, when the evaluator gets
(X0⊕πx ,Y0⊕πy), both X0⊕πx and Y0⊕πy have rightmost bit
0, indicating that the 0-th entry needs to be decrypted.
However, with GRR technique, she is able to retrieve
Zg(0⊕πx,0⊕πy) by running H(·) without inquiring GT Tg.

Pinkas et al. claimed that this technique is compatible
with the free-XOR technique [30]. For rigorousness pur-
poses, we carefully went through the details and came
up with a security proof for our protocol that confirms
this compatibility. The proof will be included in the full
version of this paper.

4.4 Random Seed Checking

Recall that the cut-and-choose approach requires the
generator to construct multiple copies of the garbled cir-
cuit, and more than half of these garbled circuits will
be fully revealed, including the randomness used to con-
struct the circuit. Goyal, Mohassel, and Smith [11] there-
fore pointed out an insight that the evaluator could exam-
ine the correctness of those check circuits by receiving
a hash of the garbled circuit first, acquiring the random
seed, and reconstructing the circuit and hash by herself.

This technique results in the communication overhead
for check circuits independent of the circuit size. This
technique has two phases that straddle the coin-flipping
protocol. Before the coin flipping, the generator con-
structs multiple copies of the circuit as instructed by the
cut-and-choose procedure. Then the generator sends to
the evaluator the hash of each garbled circuit, rather than
the circuit itself. After the coin flipping, when the eval-
uation circuits and the check circuits are determined, the
generator sends to the evaluator the full description of
the evaluation circuits and the random seed for the check
circuits. The evaluator then computes the evaluation cir-
cuits and tests the check circuits by reconstructing the
circuit and comparing its hash with the one received ear-
lier. As a result, even for large circuits, the communi-
cation cost for each check circuit is simply a hash value
plus the random seed. Our system provides that 60% of
the garbled circuits are check circuits. Thus, this opti-
mization significantly reduces communication overhead.

4.5 Working with Large Circuits

A circuit for a reasonably complicated function can eas-
ily consist of billions of gates. For example, a 4095-bit
edit distance circuit has 5.9 billion gates. When circuits
grow to such a size, the task of achieving high perfor-
mance secure computation becomes challenging.

An (I + 2C)-time solution Our solution for handling
large circuits is based on Huang et al.’s work [13], which
is the only prior work capable of handling large circuits
(of up to 1.2 billion non-XOR gates) in the semi-honest
setting. Intuitively, the generator could work with the
evaluator in a pipeline manner so that small chunks of
gates are being processed at a time. The generator could
start to work on the next chunk while the evaluator is still
processing the current one. However, this technique does
not work directly with the random seed checking tech-
nique described above in Section 4.4 because the genera-
tor has to finish circuit construction and hash calculation
before the coin flipping, but the evaluator could start the
evaluation only after the coin flipping. As a result, the
generator needs a way to construct the circuit first, wait
for the coin flipping, and send the evaluation circuits to
the evaluator without keeping them in memory the whole
time. We therefore propose that the generator constructs
the evaluation circuits all over again after the coin flip-
ping, with the same random seed used before and the
same keys for input wires gotten from OT.

We stress that when fully parallelized, the second con-
struction of an evaluation circuit does not incur overhead
to the overall execution time. Although we suggest to
construct an evaluation circuit twice, the fact is that ac-
cording to the random seed checking, a check circuit is
already being constructed twice—once before the coin
flipping by the generator for hash computation and once
after by the evaluator for correctness verification. As a
result, when each generator-evaluator pair is working on
a single copy of the garbled circuit, the constructing time
for a evaluation circuit totally overlaps with that for a
check circuit. We therefore achieve the overall computa-
tion time I+2C mentioned earlier, where the first C is for
the generator to calculate the circuit hash, and the other
C is either for the evaluator to reconstruct a check circuit
or for both parties to work on an evaluation circuit in a
pipeline manner as suggested by Huang et al. [13].

Achieving an (I +C)-time solution We observe that
there is a way to achieve I +C computation time, which
exactly matches the running time of Yao in the semi-
honest setting. This idea, however, is not compatible
with the random-seed technique, and therefore repre-
sents a trade-off between communication and computa-
tion. Recall that the generator has to finish circuit con-
struction and hash evaluation before beginning coin flip-
ping, whereas the evaluator can start evaluating only af-
ter receiving the coin flipping results. The idea is to run
the coin flipping in the way that only the evaluator gets
the result and does not reveal it to the generator until the
circuit construction is completed. Since the generator
is oblivious to the coin flipping result, she sends every
garbled circuit to the evaluator, who could then either

evaluate or check the received circuit. In order for the
evaluator to get the generator’s input keys for evaluation
circuits and the random seed for the check circuits, they
run an OT, where the evaluator uses the coin flipping re-
sult as input and the generator provides either the ran-
dom seed (for the check circuit) or his input keys (for the
evaluation circuit). After the generator completes circuit
construction and reveals the circuit hash, the evaluator
compares the hash with her own calculation, if the hashes
match, she proceeds with the rest of the original protocol.
Note that this approach comes at the cost of sacrificing
the random seed checking technique and its 60% savings
in communication.

Working Set Optimization Another problem encoun-
tered while dealing with large circuits is the working
set minimization problem. Note that the circuit value
problem is log-space complete for P. It is suspected that
L6=P, that is, there exist some circuits that can be evalu-
ated in polynomial time but require more than logarith-
mic space. This open problem captures the difficulty of
handling large circuits during both the construction and
evaluation, where at any moment there is a set of wires,
called the working set, that are available and will be ref-
erenced in the future. For some circuits, the working set
is inherently super-logarithmic. A naive approach is to
keep the most recent D wires in the working set, where
D is the upper bound of the input-output distance of all
gates. However, there may be wires which are used as
inputs to gates throughout the entire circuit, and so this
technique could easily result in adding almost the whole
circuit to the working set, which is especially problem-
atic when there are hundreds of copies of a circuit of
billions of gates. While reordering the circuit or adding
identity gates to minimize D would mitigate this prob-
lem, doing so while maintaining the topological order of
the circuit is known to be an NP-complete problem, the
graph bandwidth problem [9].

Our solution to this difficulty is to pre-process the cir-
cuit so that each gate comes with a usage count. Our
system has a compiler that converts a program in high-
level language into a boolean circuit. Since the compiler
is already using global optimization in order to reduce
the circuit size, it is easy for the global optimizer to an-
alyze the circuit and calculate the usage count for each
gate. With this information, it is easy for the genera-
tor and evaluator to decrement the counter for each gate
whenever it is being referenced and to toss away the gate
whenever its counter becomes zero. In other words, we
keep track of merely useful information and heuristically
minimize the size of the working set, which is small com-
pared with the original circuit size as shown in Table 1.

AES Dot64
4 RSA-32 EDT-255

circuit size 49,912 460,018 1,750,787 15,540,196
wrk set size 323 711 235 2,829

Table 1: The size of the working set for various circuits
(sizes include input gates)

5 Boolean Circuit Compiler

Although the Fairplay circuit compiler can generate cir-
cuits, it requires a very large amount of computational
resources to generate even relatively small circuits. Even
on a machine with 48 gigabytes of RAM, Fairplay ter-
minates with an out-of-memory error after spending 20
minutes attempting to compile an AES circuit. This
makes Fairplay impractical for even relatively small cir-
cuits, and infeasible for some of the circuits tested in this
project. One goal of this project was to have a general
purpose system for secure computation, and so writing
application specific programs to generate circuits, a tech-
nique used by others [13], was not an option.

To address this problem, we have implemented a new
compiler that generates a more efficient output format
than Fairplay, and which requires far lower computa-
tional resources to compile circuits. We were able to
generate the AES circuit in only a few seconds on a typi-
cal desktop computer with only 8GB of RAM, and were
able to generate and test much larger non-trivial circuits.
We used the well-known flex and bison tools to generate
our compiler, and implemented an optimizer as a sepa-
rate tool. We also use the results from [30] to reduce 3
arity gates to 2 arity gates.

As a design decision, we created an imperative, un-
typed language with static scoping. We allow code, vari-
ables, and input/output statements to exist in the global
scope; this allows very simple programs to be written
without too much extra syntax. Functions may be de-
clared, but may not be recursive. Variables do not need to
be declared before being used in an unconditional assign-
ment; variables assigned within a function’s body that are
not declared in the global scope are considered to be lo-
cal. Arrays are a language feature, but array indices must
be constants or must be determined at compile time. If
run-time determined indices are required for a function,
a loop that selects the correct index may be used; this is
necessary for oblivious evaluation. Variables may be ar-
bitrarily concatenated, and bits or groups of bits may be
selected from any variable and bits or ranges of bits may
be assigned to; as with arrays, the index of a bit must be
determined at compile time, or else a loop must be used.
Note that loop variables may be used as such an index,
since loops are always completely unrolled, and there-
fore the loop index can always be resolved at compile

time. Additional language features are planned as future
work.

We use some techniques from the Fairplay compiler
in our own compiler. In particular we use the single as-
signment algorithm from Fairplay, which is required to
deal with assignments that occur inside of if statements.
Otherwise, our compiler has several distinguishing char-
acteristics that make it more resource efficient than Fair-
play. The front end of our compiler attempts to gener-
ate circuits as quickly as possible, using as little memory
as possible and performing only rudimentary optimiza-
tions before emitting its output. This can be done with
very modest computational resources, and the intermedi-
ate output can easily be translated into a circuit for evalu-
ation. The main optimizations are performed by the back
end of the compiler, which identifies gates that can be
removed without affecting the output of the circuit as a
whole.

Unlike the Fairplay compiler, we avoided the use of
hash tables in our compiler, using more memory-efficient
storage. Our system can use one of three storage strate-
gies: memory-mapped files, flat files without any map-
ping, and Berkeley DB. In our tests, we found that mem-
ory mapped files always resulted in the highest perfor-
mance, but that Berkeley DB is only sometimes better
than direct access without any mapping.

In the following sections, we describe these contribu-
tions in more detail, and provide experimental results.

5.1 Circuit Optimizations

The front-end of our compiler tends to generate ineffi-
cient circuits, with large numbers of unnecessary gates.
As an example, for some operations the compiler gener-
ates large numbers of identity gates i.e. gates whose out-
puts follow one of their inputs. It is therefore essential
to optimize the circuits emitted by the front end, particu-
larly to meet our system’s overall goal of practicality.

Our compiler uses several stages of optimization, most
of which are global. As a first step, a local optimization
removes redundant gates, i.e. gates that have the same
truth table and input wires. This first step operates on
a fixed-size chunk of the circuit, but we have found that
there are diminishing improvements as the size of this
window is increased. We also remove constant gates,
identity gates, and inverters, which are generated by the
compiler and which may be inadvertently generated dur-
ing the optimization process. Finally, we remove gates
that do not influence the output, which can be thought
of as dead code elimination. The effectiveness of each
optimization on different circuits is shown in Figure 1.
The circuit that was least optimizable was the edit dis-
tance circuit, being reduced to only 82% of its size from
the front end, whereas the RSA signing and the dot prod-

uct circuits were the most optimizable, being reduced to
roughly half of the gates emitted by the front end.

Gate Removal The front-end of the compiler emits
gates in topological order, and similar to Fairplay, our
compiler assigns explicit identifiers to each emitted gate.
To remove gates efficiently, we store a table that maps
the identifiers of gates that were removed to the previ-
ously emitted gates, and for each gate that is scanned
the inputs are rewritten according to this table. The ta-
ble itself is then emitted, so that the identifiers of non-
removed gates can be corrected. This mapping process
can be done in linear time and space using an appropriate
key-value store.

Removing Redundant Gates Some of the gates gen-
erated by the front end of our compiler have the same
truth table and input wires as previously generated gates;
such gates are redundant and can be removed. This re-
moval process has the highest memory requirement of
any other optimization step, since a description of ev-
ery non-redundant gate must be stored. However, we
found during our experiments that this optimization can
be performed on discrete chunks of the circuit with re-
sults that are very close to performing the optimization
on the full circuit, and that there are diminishing im-
provements in effectiveness as the size of the chunks is
increased. Therefore, we perform this optimization us-
ing chunks, and can use hash tables to improve the speed
of this step.

Removing Identity Gates and Inverters The front
end may generate identity gates or inverters, which are
not necessary. This may happen inadvertently, such as
when a variable is incremented by a constant, or as part
of the generation of a particular logic expression. While
removing identity gates is straightforward, the removal
of inverters requires more work, as gates which have in-
verted input wires must have their truth tables rewritten.
There is a cascading effect in this process; the removal of
some identity gates or inverters may transform later gates
into identity gates or inverters. This step also removes
gates with constant outputs, such as an XOR gate with
two identical inputs. Constant propagation and folding
occur as a side effect of this optimization.

Removing Unused Gates Finally, some gates in the
circuit may not affect the output value at all. For this
step, we scan the circuit backwards, and store a table of
live gates; we then re-emit the live gates in the circuit
and skip the dead gates. Immediately following this step,
the circuit is prepared for the garbled circuit generator,
which includes generating a usage count for each gate.

Figure 1: Average fraction of circuits remaining after each optimization is applied in sequence. We see that the relative
change in circuit sizes after each optimization is dependent on the circuit itself, with some circuits being optimized
more than others.

Circuit DB (s) mmap (s) flat (s)

7200RPM Spinning Disk (ext4-fs)

AES 4.3 ±0.5% 1.05 ± 1% 3.48 ±0.3%

RSA-32 103 ±0.3% 24.6 ±0.2% 78.4 ±0.3%

Dot64
4 32.56 ±0.1% 7.1 ±0.3% 28.37 ±0.1%

EDT-255 975 ±0.1% 240 ± 1% 700 ±0.9%

Solid-State Drive

AES 3.62 ±0.3% 0.86 ± 1% 3.17 ±0.6%

RSA-32 96.5 ±0.2% 21.6 ±0.4% 68.3 ±0.3%

Dot64
4 30.5 ±0.5% 6.27 ± 1% 25.9 ±0.2%

EDT-255 907 ±0.1% 200 ±0.4% 590 ± 1%

Amazon EC2

AES 5.56 ± 4% 1.12 ± 0% 7.11 ±0.3%

RSA-32 208 ±0.4% 45.7 ± 3% 240 ±0.1%

Dot64
4 46.3 ±0.1% 9.2 ±0.2% 60.7 ±0.2%

EDT-255 2500 ± 1% 405 ±0.2% 2050 ±0.2%

Circuit Sizes

AES RSA-32 Dot64
4 EDT-255

49,912 1,750,787 460,018 15,540,196

Table 2: Compile times for different storage systems for
small circuits (sizes include input gates), using differ-
ent storage media. Results are averaged over 30 experi-
ments, with 95% confidence intervals. On EC2, a high-
memory quadruple extra large instance was used.

Key-Value Stores Unfortunately, even though our
compiler is more resource efficient than Fairplay, it still
requires space that is linear in the size of the circuit. For
very large circuits, circuits with billions of gates or more,
this may exceed the amount of RAM that is available.
Our compiler can make use of a computer’s hard drive to
store intermediate representations of circuits and infor-
mation about how to remove gates from the circuit. We
used memory-mapped I/O to reduce the impact this has
on performance; however, our use of mmap and ftruncate
is not portable, and so our system also supports using an
unmapped file or Berkeley DB. Our tests revealed that,
as expected, memory-mapped I/O achieves the highest
performance, but that Berkeley DB is sometimes better
than unmapped files on high-latency filesystems. A sum-
mary of the performance of each method on a variety of
storage systems is shown in Table 2.

Using the hard drive in this manner, we were able
to compile our largest circuits. The performance im-
pact of writing to disk should not be understated; a
several-billion-gate edit distance 4095x4095 circuit re-
quired more than 3 days to compile on an Amazon EC2
high-memory image, with 68 GB of RAM, one third of
which was spent waiting on I/O. Note, however, that this
is a one-time cost; a compiled circuit can be used in un-
limited evaluations of a secure computation protocol.

5.2 Compiler Testing Methodology
We tested the performance of our compiler using five cir-
cuits. The first was AES, to compare our compiler with
the Fairplay system. We also used AES with the com-
pact S-Box description given by Boyar and Parelta [3],
which results in a smaller AES circuit. We used an RSA

RSA Size Circuit Size Compile Time (s) Gates/s Edit-Dist Size Circuit Size Compile Time (s) Gates/s

16 208,499 2.6 ± 7% 80,000 31x31 144,277 1.70 ±0.7% 84,900
32 1,750,787 21.6 ±0.4% 81,100 63x63 717,233 8.56 ±0.7% 83,800
64 14,341,667 189 ±0.3% 75,900 127x127 3,389,812 41.7 ±0.5% 81,300
128 116,083,983 1810 ±0.3% 64,100 255x255 15,540,196 200 ±0.4% 77,700

Table 3: Time required to compile and optimize RSA and edit distance circuits on a workstation with an Intel Xeon
5506 CPU, 8GB of RAM and a 160GB SSD, using the textbook modular exponentiation algorithm. Note that the
throughput for edit distance is higher even for comparably sized circuits; this is because the front end generates a more
efficient circuit without any optimization. Compile times are averaged over 30 experiments, with 95% confidence
intervals reported.

signing circuit with various toy key sizes, up to 128 bits,
to test our compiler’s handling of large circuits; RSA cir-
cuits have cubic size complexity, allowing us to generate
very large circuits with small inputs. We also used an edit
distance circuit, which was the largest test case used by
Huang et al. [13]; unlike the other test circuits, there is no
multiplication routine in the inner loop of this function.
Finally we used a dot product with error, a basic sam-
pling function for the LWE problem, which is similar to
RSA in creating large circuits, but also demonstrates our
system’s ability to handle large input sizes.

After compiling these circuits, we tested the correct-
ness by first performing a direct, offline evaluation of the
circuit, and comparing the output to a non-circuit imple-
mentation. We then compared the output of an online
evaluation to the offline evaluation. Additionally, for the
AES circuit, we compared the output of the circuit gener-
ated by our compiler to the output of a circuit generated
using Fairplay. We tested all three key-value stores on a
variety of file systems, including a fast SSD, a spinning
disk, and an Amazon EC2 instance store, checking for
correctness as described above in each case.

5.3 Summary of Compiler Performance

Our compiler is able to emit and optimize large circuits
in relatively short periods of time, less than an hour for
circuits with tens of millions of gates on an inexpensive
workstation. In Figure 1 we summarize the effectiveness
of the various optimization stages on different circuits;
in circuits that involve multiplication in finite fields or
modulo an integer, the identity gate removal step is the
most important, removing more than half of the gates
emitted by the front-end. The edit distance circuit is the
best-case for our front end, as less than 1/5 of the gates
that are emitted can be removed by the optimizer. The
throughput of our compiler is dependent on the circuit
being compiled, with circuits which are more efficiently
generated by the front-end being compiled faster; in Ta-
ble 3 we compare the generation of RSA circuits to edit
distance circuits.

6 Experimental Results

In this section, we give a detailed description of our
system, upon which we have implemented various real
world secure computation applications. The experimen-
tal environment is the Ranger cluster in the Texas Ad-
vanced Computing Center. Ranger is a blade-based sys-
tem, where each node is a SunBlade x6240 blade run-
ning a Linux kernel and has four AMD Opteron quad-
core 64-bit processors, as an SMP unit. Each node in the
Ranger system has 2.3 GHz core frequency and 32 GB of
memory, and the point-to-point bandwidth is 1 GB/sec.
Although Ranger is a high-end machine, we use only a
small fraction of its power for our system, only 512 out of
62,976 cores. Note that we use the PBC (Pairing-Based
Cryptography) library [25] to implement the underly-
ing cryptographic protocols such as oblivious transfers,
witness-indistinguishable proofs, and so forth. However,
moving to more modern libraries such as RELIC [31] is
likely to give even better results, especially to those cir-
cuits with large input and output size.

System Setup In our system, both the generator and
the evaluator run an equal number of processes, includ-
ing a root process and many slave processes. A root pro-
cess is responsible for coordinating its own slave pro-
cesses and the other root process, while the slave pro-
cesses work together on repeated and independent tasks.
There are three pieces of code in our system: the genera-
tor, the evaluator, and the IP exchanger. Both the genera-
tor’s and evaluator’s program are implemented with Mes-
sage Passing Interface (MPI) library. The reason for the
IP exchanger is that it is common to run jobs on a cluster
with dynamic working node assignment. However, when
the nodes are dynamically assigned, the generator run-
ning on one cluster and the evaluator running on another
might have a hard time locating each other. Therefore,
a fixed location IP exchanger helps the match-up pro-
cess as described in Figure 2. Our system provides two
modes—the user mode and the simulation mode. The
former works as mentioned above, and the latter simply

spawns an even number of processes, half for the gen-
erator and the other half for the evaluator. The network
match-up process is omitted in the latter mode to sim-
plify the testing of this system.

To achieve a security level of 2−80, meaning that a ma-
licious player cannot successfully cheat with probability
better than 2−80, requires at least 250 copies of the gar-
bled circuit [32]. For simplicity, we used 256 copies in
our experiments, that is, security parameters k = 80 and
s= 256. Each experiment was run 30 times (unless stated
otherwise), and in the following sections we report the
average runtime of our experiments.

1 4

32

5

5
5

5

Evl Gen

IP server

Figure 2: Both the generator and evaluator consist of a
root process (solid dot) and a number of slave processes
(hollow dots). The match-up works as follows: the slave
evaluator processes send their IPs to the root evaluator
process (Step 1), who then forwards them to the IP ex-
changer (Step 2). Next, the root generator process comes
to acquire these IPs (Step 3) and dispatch them to its
slaves (Step 4), who then proceed to pair up with one of
the slave evaluator processes (Step 5) and start the main
protocol. The arrows show the message flow.

Timing methodology When there is more than one
process on each side, care must be taken in measuring
the timings of the system. The timings reported in this
section are the time required by the root process at each
stage of the system. This was chosen because the root
process will always be the longest running process, as
it must wait for each slave process to run to completion.
Moreover, in addition to doing all the work that the slaves
do, the root processes also perform the input consistency
check and the coin tossing protocol.

Impacts of the Performance Optimization Techniques
We have presented several performance optimization
techniques in Section 4 with theoretical analyses, and
here we demonstrate their empirical effectiveness in Ta-
ble 4. As we have anticipated, the Random Seed Check-
ing reduces the communication cost for the garbled cir-
cuits by 60%, and the Garbled Row Reduction further
reduces by another 25%. In the RS and GRR columns,

the small deviation from the theoretical fraction 40%
and 30%, respectively, is due to certain implementation
needs. Our compiler is designed to reduce the number of
non-XOR gates. In these four circuits, the ratio of non-
XOR gates is less than 43%. So after further applying
the Free-XOR technique, the final communication is less
than 13% of that in the baseline approach.

non-XOR Baseline RS GRR FX
(%) (MB) (%) (%) (%)

AES 30.81 509 39.97 30.03 9.09
Dot64

4 29.55 4,707 39.86 29.91 8.88
RSA-32 34.44 17,928 39.84 29.88 10.29
EDT-255 41.36 159,129 39.84 29.87 12.36

Table 4: The impact of various optimization techniques:
The Baseline shows the communication cost for 256
copies of the original Yao garbled circuit when k = 80;
RS shows the remaining fraction after Random Seed
technique is applied; GRR shows when Garbled Row Re-
duction is further applied; and FX shows when the previ-
ous two techniques and the Free-XOR are applied. (The
communication costs here only include those in the gen-
eration and evaluation stages.)

Performance Gain by AES-NI On a machine with
2.53 GHz Intel Core i5 processor and 4GB 1067 MHz
DDR3 memory, it takes 784 clock cycles to run a single
SHA-256 (with OpenSSL 1.0.0g), while it needs only
225 cycles for AES-256 (with AES-NI). To measure the
benefits of AES-NI, we use two instantiations to con-
struct various circuits, listed in Table 5, and observe a
consistent 20% saving in circuit construction.3

size AES-NI SHA-256 Ratio
(gate) (sec) (sec) (%)

AES 49,912 0.12± 1% 0.15± 1% 78.04
Dot64

4 460,018 1.11±0.4% 1.41±0.5% 78.58
RSA-32 1,750,787 4.53±0.5% 5.9±0.8% 76.78
EDT-255 15,540,196 42.0±0.5% 57.6± 1% 72.92

Table 5: Circuit generation time (for a single copy) with
different instantiations (AES-NI vs SHA-256) of the 2-
circular correlation robust function.

AES We used AES as a benchmark to compare our
compiler to the Fairplay compiler, and as a test circuit

3The reason that saving 500+ cycles does not lead to more improve-
ments is that this encryption operation is merely one of the contributing
factors to generating a garbled gate. Other factors, for example, in-
clude GNU hash map table insertion (∼1,200 cycles) and erase (∼600
cycles).

for our system. We tested the full AES circuit, as spec-
ified in FIPS-197 [8]. In the semi-honest model, it is
possible to reduce the number of gates in an AES circuit
by computing the key schedule offline; e.g. this is one of
the optimizations employed by Huang et al. [13]. In the
malicious model, however, such an optimization is not
possible; the party holding the key could attempt to re-
duce the security level of the cipher by computing a ma-
licious key schedule. So in our experiments we compute
the entire function, including the key schedule, online.

In this experiment, two parties collaboratively com-
pute the function f : (x,y) 7→ (⊥,AESx(y)), i.e., the cir-
cuit generator holds the encryption key x, while the eval-
uator has the message y to be encrypted. At the end, the
generator will not receive any output, whereas the evalu-
ator will receive the ciphertext AESx(y).

Type Fairplay Ours-A Pinkas et al. Ours-B

non-XOR 15,316 15,300 11,286 9,100
XOR 35,084 34,228 22,594 21,628

Table 6: The components of the AES circuits from dif-
ferent sources. Ours-A comes from the textbook AES
algorithm, and Ours-B uses an optimized S-box circuit
from [3]. (Sizes do not include input or output wires)

First of all, we demonstrate the performance of our
compiler in Table 6. We have shown in Section 5 that
our compiler is capable of large circuit generation. We
also found in our experiments that our compiler produces
smaller AES circuit than Fairplay. Given the same high-
level description of AES encryption (textbook AES), our
compiler produces a circuit with a smaller gate count and
even fewer non-XOR gates. When applying the compact
S-Box description proposed by Boyar and Parelta [3]
to the high-level description as input to our compiler, a
smaller AES circuit than the hand-optimized one from
Pinkas et al. is generated with less effort.

In Table 7, both the computational and communica-
tion costs for each main stage are listed under the tradi-
tional setting, where there is only one process on each
side. These main stages include oblivious transfer, gar-
bled circuit construction, the generator’s input consis-
tency check, and the circuit evaluation. Each row in-
cludes both the computation and communication time
used. Note that network conditions could vary from set-
ting to setting. Our experiments run in a local area net-
work, and the data can only give a rough idea on how fast
the system could be in an ideal environment. However,
the precise amount of data being exchanged is reported.

We notice in Table 7 that the evaluator spends an un-
reasonable amount of time on communication with re-
spect to the amount of data to be transmitted in both
the oblivious transfer and circuit construction stages.

Gen Eval Comm
(sec) (sec) (KB)

OT
comp 45.8±0.09% 34.0±0.2%

5,516
comm 0.1± 1% 11.9±0.6%

Gen.
comp 35.6± 0.5% –

3
comm – 35.6±0.5%

Inp. comp – 1.75±0.2%
266

Chk comm – –

Evl.
comp 14.9± 0.6% 32.4±0.4%

28,781
comm 18.2± 1% 3.2±0.8%

Total
comp 96.3± 0.3% 68.0±0.2%

34,566
comm 18.3± 1% 50.8±0.4%

Table 7: The 95% two-sided confidence intervals of the
computation and communication time for each stage in
the experiment (x,y) 7→ (⊥,AESx(y)).

This is because the evaluator spends that time waiting
for the generator to finish computation-intensive tasks.
The same reasoning explains why in the circuit evalu-
ation stage the generator spends more time in commu-
nication than the evaluator. This waiting results from
the fact that both parties need to run the protocol in a
synchronized manner. A generator-evaluator pair can-
not start next communication round while any other pair
has not finished the current one. This synchronization is
crucial since our protocol’s security is guaranteed only
when each communication round is performed sequen-
tially. While the parallelization of the program intro-
duces high performance execution, it does not and should
not change this essential property. A stronger notion
of security such as universal security will be required if
asynchronous communication is allowed. By using TCP
sockets in “blocking” mode, we enforce this communi-
cation round synchronization.

Note that the low communication during the circuit
construction stage is due to the random seed checking
technique. Also, the fact that the generator spends more
time in the evaluation stage than she traditionally does
comes from the second construction for evaluation cir-
cuits. Recall that only the evaluation circuits need to be
sent to the evaluator. Since only 40% of the garbled cir-
cuits (102 out of 256) are evaluation-circuits, the ratio of
the generator’s computation time in the generation and
evaluation stage is 35.63:14:92 ' 5:2.

We were unfortunately unable to find a cluster of hun-
dreds of nodes that all support AES-NI. Our experimen-
tal results, therefore, do not show the full potential of
all the optimization techniques we have proposed. How-
ever, recall that for certain circuits the running time in
the semi-honest setting is roughly half of that in the

node #
4 16 64 256

Gen Evl Gen Evl Gen Evl Gen Evl

OT 12.56±0.1% 8.41±0.1% 4.06±0.1% 2.13±0.2% 1.96±0.1% 0.58±0.2% 0.64±0.1% 0.19±0.2%
Gen. 8.18±0.4% – 1.92±0.7% – 0.49±0.4% – 0.14± 1% –

Inp. Chk – 0.42± 4% – 0.10± 10% – – – –
Evl. 3.3± 4% 7.08± 1% 0.80± 10% 1.58± 4% 0.23± 17% 0.37± 7% 0.12±0.5% 0.05±0.6%

Inter-com 4± 5% 13.2±0.3% 0.93± 10% 4.08±0.8% 0.31± 20% 1.98± 1% 0.11± 40% 0.72±0.2%
Intra-com 0.17± 30% 0.23± 20% 0.18± 8% 0.25± 6% 0.45± 20% 0.48± 15% 0.34± 30% 0.34± 30%

Total time 28.3±0.3% 29.4±0.3% 7.90±0.5% 8.17±0.4% 3.45± 2% 3.44± 2% 1.4± 10% 1.3± 9%

Table 8: The average and error interval of the times (seconds) running AES circuit. The number of nodes represents
the degree of parallelism on each side. “–” means that the time is smaller than 0.05 seconds. Inter-com refers to the
communication between the two parties, and intra-com refers to communication between nodes for a single party.

malicious setting. We estimate a 20% improvement in
the performance of garbled circuit generation when the
AES-NI instruction set becomes ubiquitous, based on the
preliminary results presented above in Table 5.

Table 8 shows that the Yao protocol really benefits
from the circuit-level parallelization. Starting from Ta-
ble 7, where each side only has one process, all the way
to when each side has 256 processes, as the degree of par-
allelism is multiplied by four, the total time reduces into
a quarter. Note that the communication costs between the
generator and evaluator remain the same, as shown in Ta-
ble 7. It may seem odd that the communication costs are
reduced as the number of processes increase. The real in-
terpretation of this data is that as the number of processes
increases, the “waiting time” decreases.

Notice that as the number of processes increases, the
ratio of the time the generator spends in the construc-
tion and evaluation stage decreases from 5:2 to 1:1. The
reason is that the number of garbled circuit each process
handles is getting smaller and smaller. Eventually, we
reach the limit of the benefits that the circuit-level paral-
lelism could possibly bring. In this case, each process is
dealing with merely a single copy of the garbled circuit,
and the time spent in both the generation and evaluation
stages is the time to construct a garbled circuit.

To the best of our knowledge, completing an execution
of secure AES in the malicious model within 1.4 seconds
is the best result that has ever been reported. The next
best result from Nielsen et al. [28] is 1.6 seconds, and it
is an amortized result (85 seconds for 54 blocks of AES
encryption in parallel) in the random oracle model. This
is only a crude comparison, however; our experimental
setup uses a cluster computer while Nielsen et al. used
only two desktops. A better comparison would be pos-
sible given a parallel implementation of Nielsen et al.’s
system, and we are interested in seeing how much of an
improvement such an implementation could achieve.

Large Circuits In this experiment, we run the 4095-
bit edit distance circuit, that is, (x,y) 7→ (⊥,EDT(x,y)),
where x,y ∈ {0,1}4095. In particular, we use the I +C
approach, where the computation time could be roughly
a half of that of the I+2C approach with the price of not
getting to use the random-seed technique. Recall that in
the I +C approach, the generator and the evaluator con-
duct the cut-and-choose in a way that the generator does
not know the check circuits until she finishes transferring
all the garbled circuits. Next, both the parties run the
circuit generation and evaluation in a pipeline manner,
where one party is generating and giving away garbled
gates on one end, and the other party is evaluating and
checking the received gates at the other end at the same
time. The results are shown in Table 9.

Gen Eval Comm
(sec) (sec) (Byte)

OT
19.73±0.5% 5.26±0.4%

1.7×108
1.1± 6% 15.6±0.6%

Cut-& 1.1±0.8% –
6.5×107

Choose – 1.5± 2%

Gen./Evl.
24,400± 1% 14,600± 3%

1.8×1013
4,900± 1% 14,700± 2%

Inp. 0.6± 20% –
8.5×106

Chk 0.4± 40% 0.60± 20%

Total
24,400± 1% 14,600± 3%

1.8×1013
4,900± 1% 14,700± 2%

Table 9: The result of (x,y) 7→ (⊥,EDT-4095(x,y)).
Each party is comprised of 256 cores in a cluster. This
table comes from 6 invocations of the system. Simi-
larly, the upper row in each stage is the computation time,
while the lower is the communication time.

This circuit generated by our compiler has 5.9 billion
gates, and 2.4 billion of those are non-XOR. It is worth

mentioning that, without the random-seed technique, the
communication cost shown in Table 9 can also be esti-
mated by 256× 2.4× 109× 3× 10 = 1.8× 1013, since
256 copies of the garbled circuits need to be transferred,
each copy has 2.4 billion non-free gates, each non-free
gate has three entries, and each entry has k = 80 bits.

In additional to showing that our system is capable of
handling the largest circuits ever reported, we also have
shown a speed in the malicious setting that is comparable
to those in the semi-honest setting. In particular, we were
able to complete an single execution of 4095-bit edit dis-
tance circuit in less than 8.2 hours with a rate of 82,000
(non-XOR) gates per second. Note that Huang et al.’s
system is the only one, to the best of our knowledge, that
is capable of handling such large circuits [13]; they re-
ported a rate of over 96,000 (non-XOR) gates per second
for an edit-distance circuit in the semi-honest setting.

7 Conclusion

We have presented a general purpose secure two party
computation system which offers security against mali-
cious adversaries and which can efficiently evaluate cir-
cuits with hundreds of millions and even billions of gates
on affordable hardware. Our compiler can generate large
circuits using fewer computational resources than simi-
lar compilers, and offers improved flexibility to users of
the system. Our evaluator can take advantage of parallel
computing resources, which are becoming increasingly
common and affordable. As future work, we plan further
improvements to our compiler and language, as well as
experiments on systems other than Ranger.

The source code for this system can be down-
loaded from the authors’ website (http://crypto.cs.
virginia.edu/), along with example functions, includ-
ing those describe in this paper.

8 Acknowledgements

We would like to thank Benny Pinkas, Thomas Schnei-
der, Nigel Smart and Stephen Williams for providing us
with a copy of their optimized AES circuit. We would
also like to thank Gabriel Robins for his advice on min-
imizing circuits in VLSI systems. We are particularly
grateful to Ian Goldberg for his very helpful comments.

This work is supported by Defense Advanced Re-
search Projects Agency (DARPA) and the Air Force Re-
search Laboratory (AFRL) under contract FA8750-11-
2-0211. The views and conclusions contained in this
document are those of the authors and should not be in-
terpreted as representing the official policies, either ex-
pressed or implied, of the Defense Advanced Research
Projects Agency or the US government.

References
[1] BENDLIN, R., DAMGÅRD, I., ORLANDI, C., AND ZAKARIAS,

S. Semi-homomorphic encryption and multiparty computation.
In Proceedings of the 30th Annual international conference on
Theory and applications of cryptographic techniques: advances
in cryptology (Berlin, Heidelberg, 2011), EUROCRYPT’11,
Springer-Verlag, pp. 169–188.

[2] BOGETOFT, P., CHRISTENSEN, D. L., DAMGÅRD, I.,
GEISLER, M., JAKOBSEN, T. P., KRØIGAARD, M., NIELSEN,
J. D., NIELSEN, J. B., NIELSEN, K., PAGTER, J.,
SCHWARTZBACH, M. I., AND TOFT, T. Secure Multiparty Com-
putation Goes Live. In Financial Cryptography (2009), pp. 325–
343.

[3] BOYAR, J., AND PERALTA, R. A new combinational logic
minimization technique with applications to cryptology. In Pro-
ceedings of the 9th international conference on Experimental Al-
gorithms (Berlin, Heidelberg, 2010), SEA’10, Springer-Verlag,
pp. 178–189.

[4] BRICKELL, J., AND SHMATIKOV, V. Privacy-preserving graph
algorithms in the semi-honest model. In Proceedings of the 11th
international conference on Theory and Application of Cryptol-
ogy and Information Security (Berlin, Heidelberg, 2005), ASI-
ACRYPT’05, Springer-Verlag, pp. 236–252.

[5] CANETTI, R., LINDELL, Y., OSTROVSKY, R., AND SAHAI, A.
Universally composable two-party and multi-party secure com-
putation. In Proceedings of the thiry-fourth annual ACM sym-
posium on Theory of computing (New York, NY, USA, 2002),
STOC ’02, ACM, pp. 494–503.

[6] CHOI, S. G., KATZ, J., KUMARESAN, R., AND ZHOU, H.-S.
On the security of the ”free-xor” technique. In Proceedings of the
9th international conference on Theory of Cryptography (Berlin,
Heidelberg, 2012), TCC’12, Springer-Verlag, pp. 39–53.

[7] DAMGARD, I., PASTRO, V., SMART, N., AND ZAKARIAS, S.
Multiparty Computation from Somewhat Homomorphic Encryp-
tion. In Proceedings of the 32th Annual International Cryptology
Conference on Advances in Cryptology (2012), CRYPTO ’12.
http://eprint.iacr.org/2011/535.

[8] FIPS. Advanced Encryption Standard (AES), 2001.

[9] GAREY, M., GRAHAM, R., JOHNSON, D., AND KNUTH, D.
Complexity results for bandwidth minimization. SIAM Journal
on Applied Mathematics 34, 3 (1978), 477–495.

[10] GENTRY, C., HALEVI, S., AND SMART, N. P. Homomorphic
Evaluation of the AES Circuit. In Proceedings of the 32th Annual
International Cryptology Conference on Advances in Cryptology
(2012), CRYPTO ’12. http://eprint.iacr.org/2012/099.

[11] GOYAL, V., MOHASSEL, P., AND SMITH, A. Efficient two
party and multi party computation against covert adversaries.
In Proceedings of the theory and applications of cryptographic
techniques 27th annual international conference on Advances
in cryptology (Berlin, Heidelberg, 2008), EUROCRYPT’08,
Springer-Verlag, pp. 289–306.

[12] HENECKA, W., K ÖGL, S., SADEGHI, A.-R., SCHNEIDER, T.,
AND WEHRENBERG, I. Tasty: tool for automating secure two-
party computations. In Proceedings of the 17th ACM confer-
ence on Computer and communications security (New York, NY,
USA, 2010), CCS ’10, ACM, pp. 451–462.

[13] HUANG, Y., EVANS, D., KATZ, J., AND MALKA, L. Faster
secure two-party computation using garbled circuits. In Proceed-
ings of the 20th USENIX conference on Security (Berkeley, CA,
USA, 2011), SEC’11, USENIX Association, pp. 35–35.

[14] HUANG, Y., MALKA, L., EVANS, D., AND KATZ, J. Efficient
Privacy-Preserving Biometric Identification. In NDSS’11 (2011).

http://crypto.cs.virginia.edu/
http://crypto.cs.virginia.edu/
http://eprint.iacr.org/2011/535
http://eprint.iacr.org/2012/099

[15] ISHAI, Y., KILIAN, J., NISSIM, K., AND PETRANK, E. Extend-
ing Oblivious Transfers Efficiently. In CRYPTO’03, vol. 2729 of
LNCS. Springer Berlin / Heidelberg, 2003, pp. 145–161.

[16] ISHAI, Y., PRABHAKARAN, M., AND SAHAI, A. Founding
cryptography on oblivious transfer — efficiently. In Proceed-
ings of the 28th Annual conference on Cryptology: Advances in
Cryptology (Berlin, Heidelberg, 2008), CRYPTO 2008, Springer-
Verlag, pp. 572–591.

[17] JHA, S., KRUGER, L., AND SHMATIKOV, V. Towards prac-
tical privacy for genomic computation. In Proceedings of the
2008 IEEE Symposium on Security and Privacy (Washington,
DC, USA, 2008), SP ’08, IEEE Computer Society, pp. 216–230.

[18] KIRAZ, M. Secure and Fair Two-Party Computation. PhD thesis,
Technische Universiteit Eindhoven, 2008.

[19] KIRAZ, M., AND SCHOENMAKERS, B. A Protocol Issue for
The Malicious Case of Yao’s Garbled Circuit Construction. In
27th Symposium on Information Theory in the Benelux (2006).

[20] KOLESNIKOV, V., AND SCHNEIDER, T. Improved garbled cir-
cuit: Free xor gates and applications. In Proceedings of the 35th
international colloquium on Automata, Languages and Program-
ming, Part II (Berlin, Heidelberg, 2008), ICALP ’08, Springer-
Verlag, pp. 486–498.

[21] LINDELL, Y., OXMAN, E., AND PINKAS, B. The IPS Compiler:
Optimizations, Variants and Concrete Efficiency. In CRYPTO’11
(2011), pp. 259–276.

[22] LINDELL, Y., AND PINKAS, B. Privacy preserving data min-
ing. In Proceedings of the 20th Annual International Cryptology
Conference on Advances in Cryptology (London, UK, UK, 2000),
CRYPTO ’00, Springer-Verlag, pp. 36–54.

[23] LINDELL, Y., AND PINKAS, B. An efficient protocol for se-
cure two-party computation in the presence of malicious adver-
saries. In Proceedings of the 26th annual international confer-
ence on Advances in Cryptology (Berlin, Heidelberg, 2007), EU-
ROCRYPT ’07, Springer-Verlag, pp. 52–78.

[24] LINDELL, Y., AND PINKAS, B. Secure two-party computa-
tion via cut-and-choose oblivious transfer. In Proceedings of the
8th conference on Theory of cryptography (Berlin, Heidelberg,
2011), TCC’11, Springer-Verlag, pp. 329–346.

[25] LYNN, B. Pairing-Based Cryptography Library, 2006. http:

//crypto.stanford.edu/pbc/.

[26] MALKA, L. Vmcrypt: modular software architecture for scal-
able secure computation. In Proceedings of the 18th ACM con-
ference on Computer and communications security (New York,
NY, USA, 2011), CCS ’11, ACM, pp. 715–724.

[27] MOHASSEL, P., AND FRANKLIN, M. Efficiency tradeoffs for
malicious two-party computation. In Proceedings of the 9th inter-
national conference on Theory and Practice of Public-Key Cryp-
tography (Berlin, Heidelberg, 2006), PKC’06, Springer-Verlag,
pp. 458–473.

[28] NIELSEN, J. B., NORDHOLT, P. S., ORLANDI, C., AND
BURRA, S. S. A New Approach to Practical Active-Secure Two-
Party Computation. In Proceedings of the 32th Annual Interna-
tional Cryptology Conference on Advances in Cryptology (2012),
CRYPTO ’12. http://eprint.iacr.org/2011/091.

[29] OSADCHY, M., PINKAS, B., JARROUS, A., AND MOSKOVICH,
B. Scifi - a system for secure face identification. In Proceedings
of the 2010 IEEE Symposium on Security and Privacy (Washing-
ton, DC, USA, 2010), SP ’10, IEEE Computer Society, pp. 239–
254.

[30] PINKAS, B., SCHNEIDER, T., SMART, N. P., AND WILLIAMS,
S. C. Secure two-party computation is practical. In Proceedings

of the 15th International Conference on the Theory and Applica-
tion of Cryptology and Information Security: Advances in Cryp-
tology (Berlin, Heidelberg, 2009), ASIACRYPT ’09, Springer-
Verlag, pp. 250–267.

[31] RELIC. http://code.google.com/p/relic-toolkit/.

[32] SHELAT, A., AND SHEN, C.-H. Two-output secure computation
with malicious adversaries. In Proceedings of the 30th Annual
international conference on Theory and applications of crypto-
graphic techniques: advances in cryptology (Berlin, Heidelberg,
2011), EUROCRYPT’11, Springer-Verlag, pp. 386–405.

[33] YAO, A. C. Protocols for secure computations. In Proceedings
of the 23rd Annual Symposium on Foundations of Computer Sci-
ence (Washington, DC, USA, 1982), SFCS ’82, IEEE Computer
Society, pp. 160–164.

http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
http://eprint.iacr.org/2011/091
http://code.google.com/p/relic-toolkit/

	Introduction
	Contributions
	Techniques Regarding Security
	Techniques Regarding Performance
	Baseline Yao's Garbled Circuit
	Free-XOR
	Garbled Row Reduction
	Random Seed Checking
	Working with Large Circuits

	Boolean Circuit Compiler
	Circuit Optimizations
	Compiler Testing Methodology
	Summary of Compiler Performance

	Experimental Results
	Conclusion
	Acknowledgements

