
Blacklistable Anonymous Credentials:
Blocking Misbehaving Users without TTPs

Patrick P. Tsang†, Man Ho Au§, Apu Kapadia†‡, Sean W. Smith†

†Department of Computer Science ‡Institute for Security Technology Studies
Dartmouth College Dartmouth College
Hanover, NH, USA Hanover, NH, USA

§Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia

{patrick, akapadia, sws}@cs.dartmouth.edu, mhaa456@uow.edu.au

ABSTRACT
Several credential systems have been proposed in which
users can authenticate to services anonymously. Since
anonymity can give users the license to misbehave, some
variants allow the selective deanonymization (or linking)
of misbehaving users upon a complaint to a trusted third
party (TTP). The ability of the TTP to revoke a user’s pri-
vacy at any time, however, is too strong a punishment for
misbehavior. To limit the scope of deanonymization, sys-
tems such as “e-cash” have been proposed in which users are
deanonymized under only certain types of well-defined mis-
behavior such as “double spending.” While useful in some
applications, it is not possible to generalize such techniques
to more subjective definitions of misbehavior.

We present the first anonymous credential system in which
services can “blacklist” misbehaving users without contact-
ing a TTP. Since blacklisted users remain anonymous, mis-
behaviors can be judged subjectively without users fearing
arbitrary deanonymization by a TTP.

Categories and Subject Descriptors
K.6.5 [Operating Systems]: Security and Protection—
Authentication; E.3 [Data Encryption]: Public key cryp-
tosystems

General Terms
Algorithms, Security

Keywords
privacy, anonymous authentication, user misbehavior,
anonymous blacklisting, revocation
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1. INTRODUCTION
Several cryptographic schemes allow users to authenti-

cate to service providers (SPs) anonymously. While anony-
mous authentication offers users a high degree of privacy,
it can give users the license to misbehave without the fear
of punishment. For example, Wikipedia1 has allowed edi-
tors to modify content anonymously, and as a result sev-
eral users have misbehaved by posting inappropriate con-
tent. SPs, therefore, desire some level of accountability
against misbehaving users. Several anonymous credential
systems have been proposed in which users can be selectively
deanonymized or have their accesses linked (pseudonymized)
under special circumstances. As we will discuss, for certain
applications the existing schemes are either too punitive—
deanonymization (or linking) is unreasonably harsh, and of-
ten relies on trusted third parties (TTPs) capable of revoking
a user’s privacy at any time—or too restrictive—allowing
deanonymization under only certain narrowly defined types
of misbehavior.

Deanonymizing a user is not always necessary to discour-
age misbehavior; in some cases it is sufficient to simply block
misbehaving users from making future accesses, while main-
taining their anonymity. We call this property anonymous
blacklisting. For example, anonymous access at SPs such
as Wikipedia and YouTube2 empowers users to disseminate
content without the fear of persecution—a user may add po-
litical content on Wikipedia that is forbidden by his or her
government, or post a video of police brutality to YouTube.
In such cases, while Wikipedia and YouTube may want to
penalize users who deface webpages or post copyrighted ma-
terial, it is of paramount importance for SPs to preserve the
anonymity of their well-behaving users. By guaranteeing
anonymity to all users, anonymous blacklisting allows SPs
to penalize misbehavior without the risk of exposing legiti-
mate users such as political dissenters. We now discuss why
existing solutions are not desirable for such applications.

Anonymous credential systems that support accountabil-
ity (such as Camenisch and Lysyanskaya’s [12, 15] and
schemes based on group signatures [18, 1, 6, 26]) feature a

1
http://www.wikipedia.org

2
http://www.youtube.com

http://www.wikipedia.org
http://www.youtube.com


TTP called the Open Authority (OA). The OA is capable of
identifying (or linking) the user behind any anonymous au-
thentication. Anonymous credential systems with dynamic
membership revocation [13, 2, 7, 28], mostly constructed
from dynamic accumulators [13], also feature a TTP that is
capable of deanonymizing (or linking) users. The existence
of such a TTP, however, is undesirable—users can never be
assured that their privacy will be maintained by the TTP.
Defining the circumstances under which a TTP can expose
a user, and ensuring its trustworthiness to judge fairly, is an
undue burden on SPs. For such applications, therefore, a
system without TTPs is desirable.

To eliminate the reliance on TTPs, certain “threshold-
based” approaches such as e-cash [3, 10, 11] and k-Times
Anonymous Authentication (k-TAA) [32, 29, 33, 4] have
been proposed. In these schemes, users are guaranteed
anonymity unless they authenticate more than a certain
number of threshold times. For example, spending an e-
coin twice (an undesirable action) or authenticating k + 1
times in a k-TAA scheme, provides the SP with enough
information to compute the user’s identity. Linkable ring
signatures [27, 36, 37] and periodic n-times anonymous au-
thentication [9] also fall into this category. Unfortunately,
misbehavior cannot always be defined in terms of threshold
values. For example, “inappropriate” edits to a Wikipedia
page, or “offensive” video uploads to YouTube are usually
identified based on human subjectivity. For such applica-
tions, therefore, subjective judging is desirable.

1.1 Related Solutions
To reiterate, it is important to have an anonymous cre-

dential system in which users can be blacklisted in a way
that (1) preserves their anonymity, (2) is based on subjective
definitions of misbehavior, and (3) does not rely on a TTP.
Though not intended for anonymous blacklisting, Syverson
et al. present a scheme [31] that ensures that users can
perform anonymous and serial transactions at an SP. The
SP issues blind tokens to users, which are renewed at the
end of a user’s transaction. The SP can block future con-
nections from a user by simply not issuing a new token at
the end of a transaction (e.g., if the user fails to pay for
continued service). The major drawback to this approach
is that misbehavior must be judged while the user is on-
line. Indeed, their scheme was not designed for blacklisting
users since misbehavior is usually identified long after a user
has disconnected. Recently, some of the authors of this pa-
per proposed the Nymble system [25] to allow SPs to block
misbehaving users hiding behind an anonymizing network
such as Tor [21]. Nymble makes several practical considera-
tions for anonymous IP-address blocking based on subjective
judging, but it does rely on multiple entities that can collude
to deanonymize (or link) a misbehaving user.

Even though it may seem that the ability to block future
accesses from subjectively-judged misbehaving users inher-
ently requires a TTP capable of deanonymizing (or linking)
users, we show that this is not the case.

1.2 Our Contributions
We propose the BLacklistable Anonymous Credential

(BLAC) system, the first cryptographic construction of
an anonymous credential system that supports anonymous
blacklisting and subjective judging without relying on TTPs
that are capable of revoking the privacy of users at will. We

formalize the security model for such a system, under which
we prove that our construction is secure. Furthermore, we
provide an implementation of our BLAC system and evaluate
its performance both analytically and experimentally.

Paper Outline.
We provide an overview of our BLAC system in Section 2

and formalize the model and security properties in Section 3.
In Section 4 we present preliminary information on the var-
ious cryptographic tools and assumptions used in our con-
struction, which we present in Section 5. We present an
experimental evaluation of our construction in Section 6, a
discussion of several issues in Section 7, and finally conclude
in Section 8. The interested reader is directed to the Ap-
pendix for a detailed security model and the full version of
this paper [35] for security proofs.

2. OUR APPROACH
We provide a high-level overview of our BLacklistable

Anonymous Credential (BLAC) system in this section, and
defer cryptographic details to the subsequent sections.

In our system, users authenticate to Service Providers
(SPs) anonymously using credentials issued by a Group
Manager (GM). The GM is responsible for enrolling legiti-
mate users into the system by issuing credentials to them.3

These credentials are private to the user, and not known
by the GM. We emphasize that the GM is not a TTP that
can compromise the privacy of users, and is trusted only to
enroll legitimate users into the system, and issue at most
one credential per user. SPs are willing to serve anonymous
users as long as they are legitimate users in the system (by
enrolling themselves with the GM), and have never misbe-
haved thus far, where misbehavior may be arbitrarily defined
and subjectively judged by each individual SP. We describe
this process next.

The novelty of our approach is that SPs maintain their
own blacklists of misbehaving users without knowing the
identity of the misbehaving users. Users anonymously au-
thenticating to the SP must first prove that they are not on
the SP’s blacklist (otherwise authentication will fail). Fol-
lowing a user’s authentication, SPs store a ticket extracted
from the protocol transcript of the authentication. Later, if
the SP deems the user to have misbehaved during the au-
thenticated session, possibly long after the user has discon-
nected, the SP can add the ticket as an entry in its blacklist.4

If a user Alice detects that she is on the blacklist, she termi-
nates the authentication and disconnects immediately. The
SP, therefore, learns only that some anonymous blacklisted
user was refused a connection, i.e., the SP does not learn
the identity of the blacklisted user, and the user is anony-
mous within the set of blacklisted users. Users not on the
blacklist will be able to authenticate successfully, and the
SPs learn only that the user is not on the blacklist. Fur-
thermore, our system allows SPs to remove entries from the
blacklist, thereby forgiving past misbehaviors.5 Depending

3Who is a legitimate user and how to verify such legitimacy
are application-dependent.
4In practice, the SP may privately log arbitrary information
about an authenticated session that is necessary for it to
judge at a later time whether the anonymous user misbe-
haved during that session.
5Adding and removing blacklist entries are atomic actions
as will be discussed in Section 7.



on the severity of misbehavior, a user may be blacklisted
for varying periods of time—using inappropriate language
could correspond to being blacklisted for one week, whereas
posting copyrighted material could correspond to blacklist-
ing for one month. Users are always assured that if they
successfully authenticate to an SP their access will always
remain anonymous—all that an SP can do is block future
accesses by a misbehaving user.

A glimpse into tickets.
Tickets are a vital object in our BLAC system. A ticket

is the only piece in the authentication protocol transcript
that contains information about the identity of the authen-
ticating user. Here we describe some of the properties these
tickets must possess for the system to be secure. First, tick-
ets have to be the output of some non-invertible mapping
of the user’s credential. If this were not the case, the sys-
tem would have no anonymity. Also, tickets from the same
user should be unlinkable, for otherwise SPs would be able
to tell if two authentications are from the same user. This
property implies that the mapping just mentioned must also
take as input some randomness, as a deterministic mapping
implies linkability. Furthermore, tickets must be such that
it is possible to prove and verify that a ticket is correctly
formed, and that a ticket does not belong to a given user
(if it is indeed the case). Without such a property, a user
blacklisted by an SP would still be able to authenticate to
the SP. As we will see, this property is also a necessary con-
dition to prevent misbehaving users from being“framed” (by
other users for example).
Remark. Our BLAC system may be configured to allow
or disallow the sharing of blacklist entries (tickets) between
SPs. Sharing a blacklist entry would allow multiple SPs to
block a user who misbehaved at one of the SPs. We will first
present the system where such sharing is disallowed and then
point out how to allow sharing in Section 7.

3. MODEL
We present the syntax of the Blacklistable Anonymous

Credential (BLAC) system, followed by security properties
that any construction of the BLAC system must satisfy.

3.1 Syntax
The entities in the BLAC system are the Group Manager

(GM), a set of Service Providers (SPs) and a set of users.
The BLAC system consists of the following protocols:

3.1.1 Setup
This algorithm is executed by the GM to set up the sys-

tem. On input of one or more security parameters, the al-
gorithm outputs a pair consisting of a group public key gpk
and a group private key gsk. The GM publishes gpk and
keeps gsk private.

3.1.2 Registration
This protocol is executed between the GM and a legiti-

mate user to register the user into the system. Upon suc-
cessful completion of the protocol, the user obtains a creden-
tial cred, which she keeps private to herself, and is thereby
enrolled as a member in the group of registered users.

3.1.3 Authentication
This protocol is executed between a user with credential

cred and an SP. When an execution of the protocol termi-
nates, the SP outputs a binary value of success or failure.
If the SP outputs success in an execution of the protocol,
we call the execution a successful authentication and say
that the authenticating user has succeeded in authenticating
herself; otherwise the authentication is unsuccessful and the
user has failed. Only upon a successful authentication does
the SP establish an authenticated session with the authen-
ticating user during which the user can access the service
provided by the SP. Note that the protocol transcript of a
successful authentication as seen by the SP is useful for the
SP to blacklist the authenticating user, as described next.

3.1.4 Blacklist Management
This is a suite of three algorithms: Extract, Add and

Remove, which are executed by SPs for managing their
blacklists. On input of an authentication protocol tran-
script, Extract extracts and returns a ticket from the tran-
script. A blacklist is a collection of tickets. On input of
a blacklist and a ticket, Add returns a new blacklist that
contains all the tickets in the input blacklist as well as the
input ticket. On the other hand, on input of a blacklist and a
ticket, Remove returns a new blacklist that contains all the
tickets in the input blacklist, except the one(s) equivalent to
the input ticket.6

When we say that a user Alice is blacklisted by an SP Bob,
we mean that there exists an authentication between Alice
and Bob such that Bob has added the ticket extracted from
the authentication transcript to his blacklist and has not
removed it (yet). Otherwise Alice is not blacklisted by Bob.
Also, we say that Alice is misbehaving with respect to Bob
if she is blacklisted by Bob. Otherwise, she is well-behaving.

Correctness.
Any construction of the BLAC system must be correct:

Definition 1 (Correctness). A construction of the
BLAC system is correct if all entities in the system are honest
(i.e., they follow the system’s specification) implies that for
any registered legitimate user Alice and for any SP Bob,
Alice is able to successfully authenticate herself to Bob with
overwhelming probability if Alice is not blacklisted by Bob
during the authentication.

3.2 Security Notions
We now give informal definitions of the various security

properties that a construction of the BLAC system must pos-
sess. The reader may refer to Appendix A for the formal
version of these definitions.

3.2.1 Mis-authentication Resistance
Mis-authentication occurs when an unregistered user suc-

cessfully authenticates herself to an SP. In a BLAC system
with mis-authentication resistance, SPs are assured to ac-
cept authentication only from registered users.

6We don’t define the equivalence of tickets here because it
is construction-dependent.



3.2.2 Blacklistability
Any SP Bob may blacklist a user, who has authenticated

successfully, at any later time. As a consequence, the black-
listed user will no longer be able to successfully authenticate
herself to Bob until the user is unblacklisted by Bob. In a
BLAC system with blacklistability, SPs are assured to accept
authentication only from well-behaving users, i.e., users who
are not blacklisted.

3.2.3 Anonymity
In a system with anonymity, all that SPs can infer about

the identity of an authenticating user is whether the user is
or was blacklisted at the time of protocol execution, regard-
less of whatever the SPs do afterwards, such as arbitrarily
manipulating their blacklists.

3.2.4 Non-frameability
A user Alice is framed if she is not currently blacklisted

by an honest SP Bob, but is unable to successfully au-
thenticate herself to Bob. In a BLAC system with non-
frameability, well-behaving users can always successfully au-
thenticate themselves to honest SPs.

Security.
Any construction of the BLAC system must be secure:

Definition 2 (Security). A construction of the
BLAC system is secure if it has mis-authentication resis-
tance, blacklistability, anonymity and non-frameability.

4. PRELIMINARIES
In this section we outline the assumptions and crypto-

graphic tools that we use as building blocks in our construc-
tion of the BLAC system.

4.1 Pairings
A pairing is a bilinear mapping from a pair of group el-

ements to a group element. Specifically, let G1, G2 and
GT be multiplicative cyclic groups of order p. Suppose P
and Q are generators of G1 and G2 respectively. A function
ê : G1 × G2 → GT is said to be a pairing if it satisfies the
following properties:

• (Bilinearity.) ê(Ax, By) = ê(A,B)xy for all A ∈ G1,
B ∈ G2 and x, y ∈ Zp.

• (Non-degeneracy.) ê(P,Q) 6= 1, where 1 is the identity
element in GT .

• (Efficient Computability.) ê(A,B) can be computed
efficiently (i.e. in polynomial time) for all A ∈ G1 and
B ∈ G2.

4.2 Mathematical Assumptions
The security of our construction of the BLAC system re-

quires the following two assumptions:

Assumption 1 (DDH). The Decisional Diffie-
Hellman (DDH) problem in group G is defined as
follows: On input of a quadruple (g, ga, gb, gc) ∈ G

4,
output 1 if c = ab and 0 otherwise. We say that the DDH
assumption holds in group G if no probabilistic polynomial
time (PPT) algorithm has non-negligible advantage over
random guessing in solving the DDH problem in G.

Assumption 2 (q-SDH). The q-Strong Diffie-Hellman
(q-SDH) problem in (G1,G2) is defined as follows: On input

of a (q + 2)-tuple (g0, h0, h
x
0 , hx2

0 , · · · , hxq

0 ) ∈ G1 × G
q+1
2 ,

output a pair (A, c) ∈ G1 ×Zp such that A(x+c) = g0 where
|G1| = p. We say that the q-SDH assumption holds in
(G1,G2) if no PPT algorithm has non-negligible advantage
in solving the q-SDH problem in (G1,G2).

4.3 Proofs of Knowledge
In a Zero-Knowledge Proof of Knowledge (ZKPoK) proto-

col [23], a prover convinces a verifier that some statement is
true without the verifier learning anything except the valid-
ity of the statement. Σ-protocols are a special type of three-
move ZKPoK protocols, which can be converted into non-
interactive Signature Proof of Knowledge (SPK) schemes,
or simply signature schemes [24], that are secure under the
Random Oracle (RO) Model [5].

In the following, we review several Σ-protocols that will
be needed as building blocks in our construction. We fol-
low the notation introduced by Camenisch and Stadler [17].
For instance, PK{(x) : y = gx} denotes a Σ-protocol that
proves the knowledge of x ∈ Zp such that y = gx for some
y ∈ G. The corresponding signature scheme resulting from
the application of the Fiat-Shamir heuristic to the above
Σ-protocol is denoted by SPK{(x) : y = gx}(M).

4.3.1 Knowledge and Inequalities of Discrete Loga-
rithms

Let g, b ∈ G and bi ∈ G for all i be generators of some
group G of prime order p such that their relative discrete
logarithms are unknown. One can prove in zero-knowledge
the knowledge of the discrete logarithm x ∈ Zp of y ∈ G in
base g by using the Σ-protocol:

PK {(x) : y = gx} ,

the construction of which first appeared in Schnorr identifi-
cation [30]. As we shall see, our BLAC construction requires
the SPK of this protocol to prove the correctness of tickets.

One can further prove in zero-knowledge that x does not
equal logb t, the discrete log of t ∈ G in base b, using the
Σ-protocol:

PK {(x) : y = gx ∧ t 6= bx} ,

the most efficient construction of which is due to Camenisch
and Shoup [16, §5].

In our BLAC system construction we will need a gener-
alized version of the above Σ-protocol to prove that a user
is not currently on the blacklist. In particular, we need a
protocol that allows one to prove in zero-knowledge that, for
some n > 1 and for all i = 1 to n, x 6= logbi

ti, where ti ∈ G.
That is,

PK

(

(x) : y = gx ∧

 

n̂

i=1

ti 6= bxi

!)

.

Such a Σ-protocol can be constructed by applying a tech-
nique due to Cramer et al. [19] to Camenisch and Shoup’s
construction mentioned above.7

7The technique describes a general method of constructing
proofs of disjunction or conjunction of any of the two state-
ments about knowledge of discrete logarithms.



4.3.2 BBS+ Signatures
Let g0, g1, g2 ∈ G1 and h0 ∈ G2 be generators of G1 and

G2 respectively such that g0 = ψ(h0) and their relative dis-
crete logarithms are unknown, where ψ is a computable iso-
morphism and (G1,G2) is a pair of groups of prime order p
in which the q-SDH assumption holds. Let e be a pairing
defined over the pair of groups. One can prove possession of
a tuple (A, e, x, y) ∈ G1 × Z

3
p such that Ae+γ = g0g

x
1g

y
2 , or

equivalently, ê(A,whe
0) = ê(g0g

x
1g

y
2 , h0), where w = hγ

0 , by
the Σ-protocol:

PK{(A, e, x, y) : Ae+γ = g0g
x
1g

y
2}.

The construction of this protocol can be found in [6, §4],
which is secure under the Decision-linear Diffie-Hellman as-
sumption. Au et al. [4] provide a modified construction that
does not need to rely on such an assumption. As first pointed
out in [15], the protocol’s corresponding SPK is actually the
SDH-variant of CL signatures [14], which is referred to as
BBS+ Signatures in [4]. Our BLAC construction will need
this protocol as a building block for users to prove that they
are legitimate in the system. We will employ the construc-
tion given in [4] to avoid the need of less standard assump-
tions.

5. SYSTEM CONSTRUCTION
In this section, we detail our cryptographic construction

and assess its security and efficiency.

5.1 Description

5.1.1 Parameters
Let λ, ℓ be sufficiently large security parameters. Let

(G1,G2) be a bilinear group pair with computable isomor-
phism ψ as discussed such that |G1| = |G2| = p for some
prime p of λ bits. Also let G be a group of order p where
DDH is intractable. Let g0, g1, g2 ∈ G1 and h0 ∈ G2 be
generators of G1 and G2 respectively such that g0 = ψ(h0)
and the relative discrete logarithm of the generators are un-
known.8 Let H0 : {0, 1}∗ → G and H : {0, 1}∗ → Zp be
secure cryptographic hash functions.

5.1.2 Setup
The GM randomly chooses γ ∈R Zp and computes w =

hγ
0 . The group secret key is gsk = (γ) and the group public

key is gpk = (w).

5.1.3 Registration
At the successful termination of this protocol between a

user Alice and the GM, Alice obtains a credential in the
form of (A, e, x, y) such that Ae+γ = g0g

x
1g

y
2 , and (A, e, x, y)

is known only to the user. The private input to the GM is
the group secret key gsk.

1. The GM sends m to Alice, where m ∈R {0, 1}ℓ is a
random challenge.

2. Alice sends a pair (C,Π1) to the GM, where C =

gx
1g

y′

2 ∈ G1 is a commitment of (x, y′) ∈R Z
2
p and Π1

is a signature proof of knowledge of

SPK1

n

(x, y′) : C = gx
1g

y′

2

o

(m) (1)

8This can be done by setting the generators to be the output
of a cryptographic hash function of some publicly known
seeds.

on challenge m, which proves that C is correctly
formed.

3. The GM returns as failure if the verification of Π1

returns invalid. Otherwise the GM sends to Al-
ice a tuple (A, e, y′′), where e, y′′ ∈R Zp and A =

(g0Cg
y′′

2 )
1

e+γ ∈ G1.
4. Alice computes y = y′ + y′′. She returns as failure

if ê(A,whe
0) 6= ê(g0g

x
1g

y
2 , h0). Otherwise she outputs

cred = (A, e, x, y) as her credential.
To prevent the possibility of a concurrent attack [20], we

require that users must be registered one after the other, as
opposed to concurrently.

5.1.4 Authentication
During an execution of this protocol between a user Alice

and an SP Bob, Alice’s private input is her credential cred =
(A, e, x, y). Let Bob ∈ {0, 1}∗ be the string that uniquely
identifies Bob. When the protocol terminates, Bob outputs
success or failure, indicating whether Bob should consider
the authentication attempt successful.

1. (Challenge.) Bob sends to Alice a pair (BL,m),
where m ∈R {0, 1}ℓ is a random challenge and BL =
〈τ1, . . . , τn〉 is Bob’s current blacklist and τi = (si, ti) ∈
{0, 1}ℓ×G, for i = 1 to n, is the i-th ticket in the black-
list.

2. (Blacklist Inspection.) Alice computes, for i = 1 to n,
the bases bi = H0(si||Bob). She returns as failure if
tag ti = bxi for some i (indicating that she is black-
listed). She proceeds otherwise.

3. (Proof Generation.) Alice returns to Bob a pair
(τ,Π2), where τ = (s, t) ∈ {0, 1}ℓ × G is a ticket
generated by randomly choosing a serial s ∈R {0, 1}ℓ

and computing the base b as H0(s||Bob) and then the
tag t as bx, and Π2 is a signature proof of knowledge of:

SPK2



(A, e, x, y) :

Ae+γ = g0g
x
1g

y
2 ∧

 

n̂

i=1

ti 6= bxi

!

∧ t = bx
ff

(m) (2)

on the challenge m, which proves:
(a) Ae+γ = g0g

x
1g

y
2 , i.e., Alice is a group member,

(b)
Vn

i=1 ti 6= H0(si||Bob)
x, i.e., Alice is not currently

on Bob’s blacklist, and
(c) t = H0(s||Bob)

x, i.e., the ticket τ is correctly
formed.

4. (Proof Verification.) Bob returns as failure if the
verification of Π2 returns invalid.9 Otherwise Bob
returns success.

The protocol transcript of a successful authentication at
Bob is thus trans = 〈Bob, BL,m, τ,Π2〉. As discussed, Bob
stores ticket τ extracted from the transcript, along with in-
formation logging Alice’s activity within the authenticated
session.

5.1.5 Blacklist Management
The three algorithms are all very simple and efficient.

Extract(trans) returns ticket τ in the input transcript

9Bob also terminates with failure if the blacklist is being
updated concurrently. This behavior ensures that if a user
is blacklisted at time t, she cannot authenticate to the SP
after t or until she is unblacklisted.



trans = 〈BL,m, τ,Π2〉. Add(BL, τ ) returns blacklist BL′,
which is the same as the input blacklist BL, except with
the input ticket τ appended to it. Remove(BL, τ ) returns
blacklist BL′, which is the same as the input blacklist BL,
except with all entries equal to the input ticket τ dropped.

5.2 SPK Instantiation
Both SPK1 and SPK2 presented above require instantia-

tion. We omit spelling out the relatively trivial instantiation
of SPK1. Now we instantiate SPK2 as follows.

5.2.1 Signing
To produce a proof Π2 for SPK2 on message m, do the

following.
1. Produce auxiliary commitments (A1, A2, A3,

Ã1, . . . , Ãn) by randomly picking ρ1, ρ2, ρ3, ρ4 ∈R Zp

and computing A1 = gρ1

1 gρ2

2 , A2 = Agρ1

2 , A3 = gρ3

1 gρ4

2

and, for all i = 1 to n, Ãi = (bxi /ti)
ρ3 .

2. Return Π2 as (A1, A2, A3, Ã1, . . . , Ãn,Π3), where Π3

is a signature proof of knowledge of:

SPK3



(e, x, y, ρ1, ρ2, ρ3, ρ4, α1, α2, β3, β4) :

A1 = gρ1

1 gρ2

2 ∧ 1 = A−e
1 gα1

1 gα2

2 ∧

A3 = gρ3

1 gρ4

2 ∧ 1 = A−x
3 gβ3

1 gβ4

2 ∧
ê(A2,w)

ê0
= ê(A2, h0)

−eêx
1 ê

y+α1

2 ê(g2, w)ρ1 ∧
 

n̂

i=1

Ãi = bβ3

i t−ρ3

i

!

∧ 1 = bβ3 t−ρ3

ff

(m) (3)

on message m, which can be computed using the
knowledge of e, x, y, ρ1, ρ2, ρ3, ρ4, α1, α2, β3 and
β4, where α1 = ρ1e, α2 = ρ2e, β3 = ρ3x and β4 = ρ4x.
In the above, we denoted ê(gi, h0) as êi for i = 0 to 2.

5.2.2 Verification
To verify a proof Π2 = (A1, A2, A3, Ã1, . . . , Ãn, Π3) for

SPK2 on message m, return valid if the verification of Π3

on m returns valid and Ãi 6= 1 for all i = 1 to n. Return
invalid otherwise.
Remark. The instantiation of SPK3 itself is straightfor-
ward, and is enumerated in the full version of this paper [35].

5.3 Analysis

5.3.1 Security
The correctness of the construction mostly stems from the

correctness of SPK’s. Its proof is thus relatively straight-
forward. We claim that our construction has correctness
without proof for the sake of conciseness.

We now state the following theorem about the security of
our construction. Its proof can be found in the full version
of this paper [35].

Theorem 1 (Security). Our construction of the
BLAC system is secure if the q-SDH problem is hard in
(G1,G2) and the DDH problem is hard in G under the
Random Oracle Model.

5.3.2 Complexity
We analyze the efficiency of our construction in terms of

both time and space/communication complexities. First we

Table 1: Number of operations during an authenti-
cation with a blacklist of size n.

Operation
User

SP
w/o Preproc. w/ Preproc.

G1 multi-EXP 7 0 4
GT multi-EXP 2 0 2
G multi-EXP 2n+ 1 2n n+ 1

Pairing 1 0 2

emphasize that both complexities are independent of the
number of users and SPs in the system. Thus our system
scales well with respect to these two quantities. Both com-
plexities, however, are dependent on the size of the blacklist.
In particular, the time it takes for both a user and a SP to
execute the authentication protocol, as well as communi-
cation overhead for the same protocol, grow linearly with
the current size of the SP’s blacklist.

More specifically, a blacklist of size n contains n tickets,
each consisting of an ℓ-bit string and an element of G. A
proof Π2 of SPK2 consists of 3 G1 elements, n G elements
and 12 Zp elements. The total communication complexity
for an authentication is thus (n+ 2) ℓ-bit strings, 3 G1 ele-
ments, (2n + 1) G elements and 12 Zp elements. SPs need
to store a ticket for every successful authentication.

A breakdown of time complexity of the authentication
protocol into the number of multi-exponentiations (multi-
EXPs)10 in various groups and pairings is shown in Table 1.
Other operations such as G addition and hashing are ne-
glected as they take negligible time. Some preprocessing is
possible at the user before the knowledge of the challenge
message and the blacklist. In fact, all but 2n multi-EXPs in
G can be precomputed by the user.

6. PERFORMANCE EVALUATION
We implemented our construction of the BLAC system in

C and packaged the code into a software library to allow for
easy adoption by different potential applications. We used
the Pairing-Based Cryptography (PBC) Library.11 (version
0.4.7) for the underlying elliptic-curve and pairing opera-
tions, which is built on the GNU MP Bignum (GMP) Li-
brary.12 We also made use of several routines in OpenSSL,13

such as its SHA-1 hash function for instantiating the cryp-
tographic hash functions needed by our construction.

The choice of curve parameters can have a significant ef-
fect on the performance of an implementation. We used
pairings over Type-A curves as defined in the PBC library.
A curve of such type has the form of E : y2 = x3 + x over
the field Fq for some prime q. Both G1 and G2 are the group
of points E(Fq) of order p for some prime p such that p is a
factor of q+1. The pairing is symmetric and has an embed-
ding degree k of 2. Thus GT is a subgroup of Fq2 . In our
implementation, q and p are respectively 512-bit and 160-
bit. We also used GT for G, the group wherein the tickets
reside.

10 A multi-EXP computes the product of exponentiations
faster than performing the exponentiations separately. We
assume that one multi-EXP operation multiplies up to 3
exponentiations.

11
http://crypto.stanford.edu/pbc/

12
http://gmplib.org/

13
http://www.openssl.org/

http://crypto.stanford.edu/pbc/
http://gmplib.org/
http://www.openssl.org/


The interface to the library we implemented is defined
by a list of C functions. Some of the more important ones
are as follows. setup() is a function that implements the
Setup algorithm. The functions register_gm() and regis-

ter_user(), executed by the GM and the user respectively,
together implement the Registration protocol. Similarly
authen_sp() and authen_user() together implement the
Authentication protocol.

6.1 Prototyping
Using our library, we prototyped a proof-of-concept ap-

plication that allows users to post text messages at a web
forum. This can be thought of as users editing Wikipedia
pages. We did not prototype the user registration part of
the system because our major interest was to study the per-
formance of the Authentication protocol.

In our prototype, the authentication is carried out as fol-
lows. The SP first creates a listening socket. Upon the
arrival of a connection request from a user, the SP sets up
an SSL socket with the user using OpenSSL.14 This means
that a confidential and server-authenticated channel is set
up between the user and the SP. From within this channel,
the user and the server respectively execute authen_user()

and authen_sp(). If authen_sp returns failure, then the
SP closes the SSL connection, thereby refusing to serve the
user. Otherwise, SP serves the user using the same channel
by recording the text message sent by the user, along with
the ticket extracted from the authentication transcript. The
SP may then manually inspect the text message and add the
associated ticket to its blacklist.

Alternatively, by integrating it with SSL server-
authentication, BLAC authentication can be turned into a
mutual authentication, in which the user authenticates the
server’s identity but the server is ensured that and only that
the user is some well-behaving user.

6.2 Experimental Results and Analysis
For our experiments, we used a Dell GX745 desktop ma-

chine with an Intel dual-core 2.16 GHz CPU and 2GB of
RAM, running Linux/Ubuntu 6.10. All the timings reported
below are averaged over 10 randomized runs.

We measured two time quantities related to the execution
of the Authentication protocol: (1) the time it took for an
SP to verify the authentication (i.e., step 4 of the protocol),
and (2) the time it took for a user to inspect the blacklist
and produce a proof (i.e., steps 2 and 3 of the protocol),
with preprocessing enabled. The sum of these two quantities
roughly represents the total latency incurred by the protocol
as perceived by the user if we ignore the network I/O delay,
which is network-dependent.

When the blacklist was empty, it took the SP 0.06s to ver-
ify the authentication. When the blacklist had 400 entries
instead, it took the server 0.46s to do the same. On the
other hand, when the blacklist size was 0 and 400, the user
spent 0.09ms and 0.73s respectively to inspect the black-
list and produce a proof. The estimated protocol latencies
are thus 0.06s and 1.19s respectively. The total communica-
tion overhead due to the authentication protocol is roughly
0.27KB per blacklist entry. Table 2 shows experimental fig-
ures collected with different blacklist sizes. Please see our

14For simplicity’s sake, the SP uses a self-signed key-pair to
authenticate himself.

Table 2: Performance of our authentication protocol
with respect to different blacklist sizes.

Blacklist Size (#Entries) 0 100 200 400 800 1600
Time (in s) for User to

0.00 0.18 0.36 0.73 1.45 2.85inspect the blacklist and
generate a proof (steps 2 & 3)

Time (in s) for SP to
0.06 0.16 0.26 0.46 0.87 1.68

verify the proof (step 4)

Estimated Protocol Latency
0.06 0.34 0.62 1.19 2.32 4.53

(in s) perceived by User

Communication
0.8 27.7 54.7 108.6 216.4 431.8

Overhead (in KB)

discussion in Section 7 that elaborates on the feasibility of
our construction in real applications.

Note that our authentication protocol scales well with the
number of cores in CPUs because virtually all computation
that grows linearly with the blacklist size is parallelizable.15

As evidence, on our dual-core machine, all the timings we
collected using our original single-threaded implementation
almost doubled the figures we just reported above. In our
current multi-threaded implementation, the library interface
includes a bootstrapping function that takes the number of
threads as an input.

7. DISCUSSION

Efficiency.
In our cryptographic construction, blacklist verification

requires O(n) computations, where n is the number of en-
tries in the blacklist. As indicated by Section 6, our scheme
would support 1,600 blacklist entries with 2 authentications
per second on an 8-core machine.16 Since anonymous au-
thentications will be used at SPs such as Wikipedia only for
certain operations such as editing webpages, we believe this
performance is reasonable. Consider two extreme examples.
In March 2007, Wikipedia averaged about two edits per sec-
ond to its set of English webpages.17 Likewise, YouTube
reported less than one video upload per second on average
in July 2006.18 The communication complexity required to
sustain one or two authentications per second with 1,600
blacklist entries would be about 3.5 to 7 Mbps for the SP.
Such a data rate would be high for an individual server,
but would be reasonable for large SPs such as YouTube and
Wikipedia, which may have distributed servers across the
nation for handling large bandwidth. Based on these cal-
culations, SPs with much lower authentication rates than
Wikipedia or YouTube (e.g., one authentication every few
seconds) can easily be served on commodity hardware and
T-1 lines. We reiterate that our construction is the first to
allow anonymous blacklisting without TTPs, and more effi-
cient blacklist checking, perhaps in O(log n) or O(1) time, is
an open problem that deserves further research. Faster veri-
fication will allow much higher rates of authentication while

15The only exception is the two calls to SHA-1, but they take
comparably negligible time.

16An 8-core Mac Pro with two 3.0GHz Quad-Core Intel Xeon
processors was available for under $4,000 at the time of writ-
ing.

17
http://stats.wikimedia.org/EN/PlotsPngDatabaseEdits.htm

18
http://technology.guardian.co.uk/weekly/story/0,,

1823959,00.html

http://stats.wikimedia.org/EN/PlotsPngDatabaseEdits.htm
http://technology.guardian.co.uk/weekly/story/0,,1823959,00.html
http://technology.guardian.co.uk/weekly/story/0,,1823959,00.html


supporting extremely large blacklists, and this problem is,
therefore, worthy of further study.

Interleaving authentications.
One concern is that an individual user may attempt to

interleave multiple authentications and take up several hun-
dreds of entries in the blacklist by misbehaving several times
in a short span of time. Such an attack is possible because
users can parallelize several anonymous sessions with an SP.
A promising approach would be to use a scheme such as
Camenisch et al.’s periodic n-times anonymous authentica-
tion [9] to rate-limit the number of anonymous accesses from
users. In such a scheme, an anonymous user would be able
to access the SP anonymously at most n times within a time
period. For example, for n = 10 and a time period of 1 day,
a single user would be able to contribute at most 10 entries
to the blacklist in a given day.
Remark. Since concurrent sessions are preempted while
an entry is added (atomically) to a blacklist, our system
guarantees that once an entry is added to the blacklist at
time t, the blacklisted user will not be able to access the
service after time t (or until unblacklisted at a later time).

Enrollment issues.
We assume that the Group Manager issues only one cre-

dential per legitimate user and assume it is difficult to per-
form“Sybil”attacks [22], where users are able to obtain mul-
tiple credentials by posing as different identities. The Sybil
attack, however, is a challenging problem that any creden-
tial system is vulnerable to, and we do not attempt to solve
this problem here.

In a real deployment of a BLAC system, users may eventu-
ally misplace their credentials, or have them compromised.
Since that credential may be blacklisted by an SP, issuing
a new credential to a user can help that user circumvent
anonymous blacklisting. As a trade-off, we suggest that if
a user misplaces his or her credential, that user is issued a
pseudonymous credential for a certain amount of time called
the “linkability window.” If a user repeatedly attempts to
acquire new credentials, the linkability window of that user
can be increased to curb misbehavior.

Allowing the sharing of (entries in) blacklists.
We have presented our construction of the BLAC system

in which an SP Bob cannot use an entry from another SP’s
blacklist (corresponding to Alice) to prevent Alice from suc-
cessfully authenticating to Bob. Nevertheless, in some ap-
plications, a group of SPs may desire to block users misbe-
having at any one of the SPs.

Our system can be modified to allow such sharing—
instead of computing the tag as t = H(s||Bob)x, one com-
putes the tag as t = H(s)x regardless of the SP for which
the ticket is meant. Tickets with tags computed this way
are sharable between SPs because adding a user’s ticket bor-
rowed from another SP is no different from the SP obtaining
the ticket directly from the user. Such a change in con-
struction, however, makes it necessary to redefine security
notions. For example, Wikipedia may decide to add only
YouTube’s tickets to its blacklist. If a user’s authentication
fails, Wikipedia knows that the user has previously visited
YouTube. Even though the user is anonymous, an SP can
learn information about the user’s behavior at another SP.

Revoking compromised TPMs.
Concurrently and independently, Brickell and Li [8] have

proposed a method to unlinkably revoke compromised
Trusted Platform Modules (TPMs) [34]. While they focus
on revoking compromised hardware, as opposed to black-
listing misbehaving users, their construction is similar to
ours. Both solutions use a protocol for proving the inequal-
ity of multiple discrete logarithms to prove that a user is
not revoked/blacklisted. Nevertheless, signatures in their
solution are not bound to the verifier’s identity and authen-
ticating even once could result in the global revocation of
the prover. Our solution provides more privacy by allowing
sharing and non-sharing of blacklist entries among verifiers.
Finally, their solution is RSA-based while ours is pairing-
based.

8. CONCLUSION
We motivated the need for anonymous credential systems

that support anonymous blacklisting and subjective judging
without relying on trusted third parties that are capable of
deanonymizing (or linking) users. All previous solutions rely
on either trusted third parties or restricted formulations of
misbehavior. We provide the first cryptographic construc-
tion that simultaneously provides anonymous blacklisting,
subjective judging, and eliminates the reliance on trusted
third parties capable of revoking the privacy of users.
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APPENDIX

A. SECURITY GAMES
We use a game-based approach to define the security for-

mally. The adversary’s capabilities are modeled by oracles,
which are stateful and together share a private state denoted
by state. state contains three counters m, n and a, which
are initially set to 0, and six sets UP ,UA,UB ,SP ,SA,AA,
which are initially set to ∅. In the following, we describe the
oracles.
P-Join This oracle simulates the registration protocol be-

tween an honest user and an honest GM. Upon in-
vocation, the oracle increments n by 1, sets state :=
state||〈n, transn, credn〉, where transn is the transcript
of the registration protocol and certn is the resulting

http://eprint.iacr.org/


user credential. (transn, n) is returned to the adversary
and n is added to UP .

A-Join This oracle simulates the registration protocol be-
tween a corrupt user and an honest GM. n is incre-
mented by 1 after the oracle is invoked. The oracle
also sets state := state||〈n, transn,⊥〉, where transn is
again the protocol transcript. The oracle adds n to UA

and returns n to the adversary.
B-Join This oracle simulates the registration protocol be-

tween an honest user and a corrupt GM. Upon in-
vocation, the oracle increments n by 1, sets state :=
state||〈n,⊥, credn〉, where credn is the credential issued
to the user by the adversary. n is added to UB and is
returned to the adversary.

Corrupt(i) This oracle allows the adversary to corrupt an
honest user. Upon invocation, i is removed from UB

or UP and is added to UA. credi, together with all
randomness used during any communication attempt
involving user i are returned to the adversary.

Add-SP This oracle allows the adversary to introduce an
SP into the system. When invoked, m is incremented
by 1, then added to SP , and returned to the adversary.

P-Auth(i,j) On input i such that i ∈ UP ∪ UB and j ∈
SP , the oracle uses credi to produce an authentication
transcript πa with SPj . (πa, a) is recorded in state and
returned to the adversary. a is then incremented by 1.

A-Auth(j) On input j ∈ SP , the oracle acts on behalf of
the honest SPj and interacts with a corrupt user in the
authentication protocol. The authentication transcript
πa is recorded in state after the protocol execution and
a is returned to the adversary. a is added to the set AA

and finally incremented by 1.
B-Auth(i,j) On input i such that i ∈ UB ∪ UP , the oracle

acts on behalf of an honest user and interacts with a
corrupt SPj in the authentication protocol. If j 6∈ SA, j
is removed from SP and added to SA. The authentica-
tion transcript πa is recorded in state after the protocol
execution and a is returned to the adversary. Finally,
a is incremented by 1.

AddToBL(i,j) On input i such that i < a, the ticket τi =
Extract(πi) is added to SPj ’s blacklist.

RemoveFromBL(j,τ) On input j and τ such that τ is in
SPj ’s blacklist, τ is removed from that blacklist.

A.1 Mis-authentication Resistance and
Blacklistability

Mis-authentication resistance is in fact implied by Black-
listability: if someone can authenticate to an SP without
having registered, she can authenticate after being black-
listed by mounting an attack against mis-authentication re-
sistance. The following game between challenger C and ad-
versary A formally defines Blacklistability.
Setup Phase. C takes a sufficiently large security parame-

ter and generates gpk and gsk. gpk is given to A.
Probing Phase. A is allowed to issue queries to all the

oracles except B-Join.
End Game Phase. A outputs j such that j ∈ SP . A wins

the game if both of the following are true:
• In the End Game Phase, there exists a series

of A-Auth(j) and AddToBL oracle queries
(A-Auth(j), AddToBL(a1, j), A-Auth(j),
AddToBL(a2, j), · · · , A-Auth(j), AddToBL(ak, j),
A-Auth(j)) such that ax > ay for all x > y, a1 is

the return value of the first A-Auth(j) query in the
End Game Phase, ax ∈ AA for all x ∈ {1, · · · , k},
and all these k + 1 A-Auth queries are successful.
We remark that the adversary is allowed to make
any queries (except B-Join) within the series.

• k >= |UA|+QR where QR is the number of times A
invokes the oracle RemoveFromBL(j,Extract(πai

))
for i = 1, · · · , k.

A.2 Anonymity
The following game between challenger C and adversary

A formally defines anonymity.
Setup Phase. C takes a sufficiently large security parame-

ter and generates gpk and gsk, which are given to A.
Probing Phase. A is allowed to issue queries to all the

oracles except P-Join.
Challenge Phase. Sometime during the game, A outputs

i0, i1, j such that i0, i1 ∈ UB. C then flips a fair coin
b ∈ {0, 1}. Depending on j ∈ SP or not, A invokes the
P-Auth or B-Auth oracle on j, without specifying i. C
answer using ib.

Probing Phase 2. A is allowed to issue queries as in Prob-
ing Phase.

End Game Phase. A outputs a guess bit b′. A wins the
game if b = b′ and at least one of the following is true:
• (Case I.) In the probing phase, A never invokes

AddToBL(i, j) such that πi is an authentication
transcript from user i0 or i1. (Technically speak-
ing, A is allowed to make such a query provided
that just before the challenge phase, it has in-
voked RemoveFromBL(j, τ ) to remove the ticket
τ of i0 or i1 from SPj ’s blacklist.) In probing
phase 2, A never invokes AddToBL(i, j) such that
i = P-Auth(ib, j) or i = B-Auth(ib, j).

• (Case II.) In the probing phase, A invokes
AddToBL(i1, j) and AddToBL(i2, j) such that
πi1 and πi2 are authentication transcripts
from user i0 and i1 respectively. A does not
invoke RemoveFromBL(j,Extract(πi1)) and
RemoveFromBL(j,Extract(πi2)). In probing phase
2, A never invokes RemoveFromBL(j,Extract(πi))
such that i = P-Auth(ib, j) or i = B-Auth(ib, j).

A.3 Non-frameability
The follow game between challenger C and adversary A

formally defines Non-frameability.
Setup Phase. C takes a sufficiently large security parame-

ter and generates gpk and gsk, which are given to A.
Probing Phase. A is allowed to issue queries to all the

oracles except P-Join.
End Game Phase. A outputs i such that i ∈ UB , A wins

the game if at least one of the following is true:
• (Case I.) A outputs j. A invokes P-Auth(i,j) or

B-Auth(i,j) such that P-Auth or B-Auth return
an authentication transcript indicating the authen-
tication attempt is unsuccessful. In the probing
phase, A never invokes AddToBL(k,j) such that
πk is an authentication transcript from user i.

• (Case II.) Let Si = {Extract(π)} where π is any
authentication transcript in the P-Auth, B-Auth
query involving user i. A outputs πA such that πA

is the transcript of any A-Auth of B-Auth query
and Extract(πA) ∈ Si.
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