
Nymble: Anonymous IP-Address Blocking?

Peter C. Johnson1, Apu Kapadia1,2, Patrick P. Tsang1, and Sean W. Smith1

1 Department of Computer Science
Dartmouth College

Hanover, NH 03755, USA
2 Institute for Security Technology Studies

Dartmouth College
Hanover, NH 03755, USA

{pete,akapadia,patrick,sws}@cs.dartmouth.edu

Abstract. Anonymizing networks such as Tor allow users to access Internet ser-
vices privately using a series of routers to hide the client’s IP address from the
server. Tor’s success, however, has been limited by users employing this anonymity
for abusive purposes, such as defacing Wikipedia. Website administrators rely on IP-
address blocking for disabling access to misbehaving users, but this is not practical
if the abuser routes through Tor. As a result, administrators block all Tor exit nodes,
denying anonymous access to honest and dishonest users alike. To address this prob-
lem, we present a system in which (1) honest users remain anonymous and their
requests unlinkable; (2) a server can complain about a particular anonymous user
and gain the ability to blacklist the user for future connections; (3) this blacklisted
user’s accesses before the complaint remain anonymous; and (4) users are aware of
their blacklist status before accessing a service. As a result of these properties, our
system is agnostic to different servers’ definitions of misbehavior.

1 Introduction

Anonymizing networks such as Crowds [25] and Tor [15] route traffic through independent
nodes in separate administrative domains to hide the originating IP address. Unfortunately,
misuse has limited the acceptance of deployed anonymizing networks. The anonymity pro-
vided by such networks prevents website administrators from blacklisting individual ma-
licious users’ IP addresses; to thwart further abuse, they blacklist the entire anonymizing
network. Such measures eliminate malicious activity through anonymizing networks at the
cost of denying anonymous access to honest users. In other words, a few “bad apples” can
spoil the fun for all. (This has happened repeatedly with Tor.3)

Some approaches for blacklisting abusive users are based on pseudonyms [11,13,14,19].
In these systems, of which Nym [17] seems most relevant, users are required to log into

? This research was supported in part by the NSF, under grant CNS-0524695, and the Bureau of
Justice Assistance, under grant 2005-DD-BX-1091. The views and conclusions do not necessarily
reflect the views of the sponsors.

3 The Abuse FAQ for Tor Server Operators lists several such examples at http://tor.eff.org/faq-
abuse.html.en.

2

websites using an assigned pseudonym, thus assuring a level of accountability. Unfortu-
nately, this approach results in pseudonymity for all users—ideally, honest users should
enjoy full anonymity, and misbehaving users should be blocked.

To this end, we present a secure system in which users acquire an ordered collection
of nymbles, a special type of pseudonym, to connect to websites. Without additional data,
these nymbles are computationally hard to link, and hence using the stream of nymbles
simulates anonymous access to services. Websites, however, can blacklist users by obtain-
ing a trapdoor for a particular nymble, allowing them to link future nymbles from the same
user—those used before the complaint remain unlinkable. Servers can therefore blacklist
anonymous users without knowledge of their IP addresses while allowing honest users to
connect anonymously. Our system ensures that users are aware of their blacklist status
before they present a nymble, and disconnect immediately if they are blacklisted. Further-
more, websites avoid the problem of having to prove misbehavior: they are free to establish
their own independent blacklisting policies. Although our work applies to anonymizing
networks in general, we consider Tor for purposes of exposition. In fact, any number of
anonymizing networks can rely on the same nymble system, blacklisting anonymous users
regardless of their anonymizing network(s) of choice.

Our research makes the following contributions:

• Blacklisting anonymous users. We provide a means by which servers can blacklist
users of an anonymizing network without deanonymizing them. Honest users enjoy
anonymous access and are unaffected by the misbehavior of other users.

• Practical performance. A system such as ours, relying on a server to issue nymbles,
will be adopted only if performance is acceptable. Our protocol minimizes storage
requirements and the use of expensive asymmetric cryptographic operations.
• Prototype implementation. With the goal of contributing a workable system, we

have built a prototype implementation. We provide performance statistics to show that
our system is indeed a viable approach for selectively blocking users of large-scale
anonymizing networks such as Tor.

Many in the community worry that “deanonymization” will become a vehicle for sup-
pressing individuals’ rights. This project moves in the other direction, by allowing websites
to block users without knowing their identities, hopefully increasing mainstream accep-
tance of anonymizing technologies such as Tor.

2 Related Work

Anonymous credential systems such as Camenisch and Lysyanskaya’s [7,8] use group sig-
natures for anonymous authentication, wherein individual users are anonymous among a
group of registered users. Non-revocable group signatures such as Ring signatures [26]
provide no accountability and thus do not satisfy our needs to protect servers from mis-
behaving users. Basic group signatures [1,2,3,12] allow revocation of anonymity by no
one except the group manager. As only the group manager can revoke a user’s anonymity,
servers have no way of linking signatures to previous ones and must query the group man-
ager for every signature; this lack of scalability makes it unsuitable for our goals. Traceable
signatures [18,30] allow the group manager to release a trapdoor that allows all signa-
tures generated by a particular user to be traced; such an approach does not provide the

3

backward anonymity that we desire, where a user’s accesses before the complaint remain
anonymous. Specifically, if the server is interested in blocking only future accesses of bad
users, then such reduction of user anonymity is unnecessarily drastic. When a user makes
an anonymous connection the connection should remain anonymous. And misbehaving
users should be blocked from making further connections after a complaint.

In some systems, misbehavior can be defined precisely. For instance, double-spending
of an “e-coin” is considered misbehavior in anonymous electronic cash systems [4,10].
Likewise, compact e-cash [6], k-times anonymous authentication [28] and periodic n-
times anonymous authentication [5] deem a user to be misbehaving if she authenticates
“too many” times. In these cases, convincing evidence of misbehavior is easily collected
and fair judgment of misbehavior can be ensured. While such approaches can encourage
certain kinds of fair behavior in anonymizing networks (e.g., e-coins can be used to control
bandwidth consumption of anonymous users), it is difficult to map more complex notions
of misbehavior onto “double spending” or related approaches. It may be difficult to pre-
cisely define what it means to “deface a webpage” and for Wikipedia to prove to a trusted
party that a particular webpage was defaced. How can the user be sure these “proofs” are
accurate and fairly judged? Can we avoid the problem of judging misbehavior entirely?
In this paper we answer affirmatively by proposing a system that does not require proof
of misbehavior. Websites may complain about users for any reason; our system ensures
users are informed of complaints against them, thus “making everybody happy”—except,
of course, the misbehaving users, who remain anonymous but are denied access.

Syverson et al. [27] provide a solution to a closely-related problem. To facilitate anony-
mous and unlinkable transactions, users are issued a blind signature for access to a service.
This blind signature can be renewed with another blind signature (for the subsequent con-
nection) each time the user has been served. If a user misbehaves, a server can terminate
its service to that user by not renewing that user’s blind signature. As a result, misbehavior
must be detected during the user’s connection. In contrast, our system targets scenarios in
which misbehavior is detected after the user has disconnected.

A preliminary work-in-progress version of this paper (suggesting the use of trusted
hardware) was presented at the Second Workshop on Advances in Trusted Computing [29].

3 System overview

Resource-based blocking. Our system provides servers with a means to block misbehav-
ing users of an anonymizing network. Blocking a particular user, however, is a formidable
task since that user can acquire several identities—the Sybil attack is well known [16] in
this regard. Our system, therefore, focuses on blocking resources that are (usually) con-
trolled by a single user. In this paper, we focus on IP addresses as the resource, but our
scheme generalizes to other resources such as identity certificates, trusted hardware, and
so on. Our system ensures that nymbles are bound to a particular resource, and servers can
block nymbles for that resource. We note that if two users can prove access to the same
resource (e.g., if an IP address is reassigned to another user), they will obtain the same
stream of nymbles. Since we focus on IP address blocking, in the remainder of the paper,
the reader should be aware that blocking “a user” really means blocking that user’s IP ad-
dress (although, as mentioned before, other resources may be used). We will address the
practical issues related with IP-address blocking in Section 7.

4

Tor

Service Request

System Setup

Nymble Ticket
AcquisitionUser

Registration
System
Setup Complaining

Nymble
Manager

ServerUser

Pseudonym
Manager

Version Info.
Request

Fig. 1. System Architecture

Pseudonym Manager. The user must first contact the Pseudonym Manager (PM) and
demonstrate control over a resource; for IP-address blocking, a user is required to connect
to the PM directly (i.e., not through a known anonymizing network), as shown in Figure 1.
We assume the PM has knowledge about Tor routers, for example, and can ensure that
users are communicating with it directly.4 Pseudonyms are deterministically chosen based
on the controlled resource, ensuring that the same pseudonym is always issued for the
same resource.

Note that the user does not disclose what server he or she intends to connect to, and
therefore the user’s connections are anonymous to the PM. The PM’s duties are limited to
mapping IP addresses (or other resources) to pseudonyms.

Nymble Manager. After obtaining a pseudonym from the PM, the user connects to the
Nymble Manager (NM) through the anonymizing network, and requests nymbles for ac-
cess to a particular server (such as Wikipedia). Nymbles are generated using the user’s
pseudonym and the server’s identity. The user’s connections, therefore, are pseudonymous
to the NM (as long as the PM and the NM do not collude) since the NM knows only the
pseudonym-server pair, and the PM knows only the IP address-pseudonym pair. Note that
due to the pseudonym assignment by the PM, nymbles are bound to the user’s IP address
and the server’s identity. To improve the collusion resistance of our system, the PM’s du-
ties can be split between n different PMs, which behave like Mixes [9]. As long as at least
one of the Mix nodes is honest, the user’s connections will be pseudonymous to the NM
and anonymous to the PM (or PMs). For the purposes of clarity, we assume a single PM.

To provide the requisite cryptographic protection and security properties, the NM en-
capsulates nymbles within nymble tickets, and trapdoors within linking tokens. Therefore,
we will speak of linking tokens being used to link future nymble tickets. The importance
of these constructs will become apparent as we proceed.

4 Note that if a user connects through an unknown anonymizing network or proxy, the security of
our system is no worse than that provided by real IP-address blocking, where the user could have
used an anonymizing network unknown to the server.

5

time of complaint

connections
are linkable

. . .

time of misbehavior

previous connections
remain anonymous

connections are
anonymous again

Time

. . .
.

W1 W2

TL TLT1 T2 T1 T! T!′

Fig. 2. The life cycle of a misbehaving user in our system

As illustrated in Figure 2, in our system, time is divided into linkability windows of
duration W , each of which is split into smaller time periods of duration T , where the
number of time periods in a linkability window L = W

T is an integer. We will refer to
time periods and linkability windows chronologically as T1, T2, . . . , TL and W1, W2, . . .
respectively. While a user’s access within a time period is tied to a single nymble ticket,
the use of different nymble tickets across time periods grants the user anonymity between
time periods—smaller time periods provide users with enough nymble tickets to simulate
anonymous access. For example, T could be set to 5 minutes, andW to 1 day. The link-
ability window serves two purposes—it allows for dynamism since IP addresses can get
reassigned to different well-behaved users, making it undesirable to blacklist an IP address
indefinitely, and it ensures forgiveness of misbehavior after a certain period of time. We
will discuss the choice of these parameters in Section 7.

Blacklisting a user. If a user misbehaves, the website may link any future connection from
this user within the current linkability window (e.g., the same day). Consider Figure 2 as
an example: A user misbehaves in a connection to a website during time period T` within
linkability window W2. The website detects the misbehavior and complains in time period
T`′ by presenting to the NM the nymble ticket associated with the misbehaving user and
obtaining a linking token therefrom. The website is then able to link future connections
by the user in time periods T`′+1, T`′+2, . . . , TL of linkability window W2. Therefore,
users are blacklisted for the rest of the day (the linkability window) once the website
has complained about that user. Note that the user’s connections in T`+1, . . . , T`′ remain
unlinkable. This property ensures that a user’s previous accesses remain anonymous, and
allows our system to avoid judging misbehavior. We now describe how users are notified
of their blacklisting status.

Notifying the user of blacklist status. Users who make use of Tor expect their connections
to be anonymous. If a server obtains a linking token for that user, however, it can link that
user’s subsequent connections (we emphasize that the user’s previous connections remain
anonymous). It is of utmost importance, then, that users be notified of their blacklisting
status before they present a nymble ticket to a server. In our system, the user can download
the server’s blacklist and verify whether she is on the blacklist. If so, the user disconnects
immediately (the server learns that “some blacklisted user” attempted a connection). Since
the blacklist is cryptographically signed by the NM, the authenticity of the blacklist is eas-
ily verified. Furthermore, the NM provides users with “blacklist version numbers” so that

6

the user can also verify the freshness of the blacklists. We ensure that race conditions are
not possible in verifying the freshness of a blacklist. Our system therefore makes “every-
body happy”—honest users can enjoy anonymity through Tor, servers can blacklist the
anonymous users of their choice, and users can check whether they have been blacklisted
before presenting their nymble ticket to the server. If blacklisted, the user does not present
the nymble ticket, and disconnects.

4 The Nymble Authentication Module

In this section we present the Nymble Authentication Module (Nymble-Auth), our crypto-
graphic construction that centers on the services provided by the Nymble Manager (NM).
Nymble-Auth allows users to authenticate to servers in a manner that both preserves the
privacy of honest users and protects servers from misbehaving users. Nymble-Auth thus
serves as the fundamental building block in our NYMBLE system. For simplicity, in this
section we assume that users contact the NM directly. In the next section, we describe the
entire NYMBLE system, which also includes the Pseudonym Manager (PM).

4.1 The Model
Syntax. Nymble-Auth uses a semi-trusted third party, the Nymble Manager (NM), to
issue nymble tickets to users to authenticate themselves to servers. More specifically,
Nymble-Auth consists of three entities: the NM, a set of users, and a set of servers, and
a tuple of (possibly probabilistic) polynomial-time algorithms: Setup, NymbleTktGen,
LinkingTknExt, ServerVerify, NMVerify and Link.

To initialize Nymble-Auth, the NM invokes Setup to initialize the system. Upon re-
ceiving a request from a user, the NM executes NymbleTktGen to generate a nymble ticket
for that user. The user can obtain service at a server by presenting a valid nymble ticket
for that server. Upon request from a server, the NM executes LinkingTknExt to extract a
linking token from a valid nymble ticket of some user for linking future nymble tickets of
the same user. The NM and the servers may run NMVerify and ServerVerify respectively
to check the validity of a nymble ticket. Finally, servers may run Link to test if a user’s
nymble ticket is linked to a linking token.

Security Notions. Roughly speaking, a secure Nymble-Auth must satisfy the following
security properties (we will formalize these properties in Appendix A.1):

1. Nymble tickets are Unforgeable. As a result, they can be obtained only from the NM.
Valid nymble tickets serve as legitimate authenticators issued by the NM for users to
authenticate to servers.

2. Nymble tickets are Uncircumventably Forward-Linkable. Once a linking token is is-
sued for a user/server/linkability-window tuple, all future nymble tickets for that tuple
are linkable. This property allows for blacklisting misbehaving users.

3. Nymble tickets are Backward Anonymous. Without a linking token, nymble tickets are
all anonymous and thus unlinkable. Given a linking token for a user/server/linkability-
window tuple, previous nymble tickets are still anonymous, and so are nymble tickets
of the same user for other servers and other linkability windows. This property ensures
that all accesses by a user before the time of complaint remain anonymous.

7

g

nymbleLnymble1 nymble2

f

g g

seed tdr1 tdrLtdr2
f f

· · ·
f

Fig. 3. Evolution of trapdoors and nymbles

Communication Channels and Time Synchronization. There are different security re-
quirements for the communication channels between the entities in various protocols. A
channel may be confidential and/or authenticated at one or both ends. Such a channel may
be realized using SSL/TLS over HTTP under a PKI such as X.509. We call a channel
secure if it is both confidential and mutually-authenticated. A channel may also be anony-
mous, in which case the communication happens through Tor. We emphasize that while
the NM, the PM, and the servers must set up PKI key-pairs, our system does not require
users to have PKI key-pairs.

All entities are assumed to share a synchronized clock. The requirement of the gran-
ularity of the clock depends on the application in question. We will have more discussion
on how we ensure time synchronization and its consequences in Section 6.

4.2 Our Construction
Overview. At its core, Nymble-Auth leverages a hash-chain-like structure for establishing
the relationship between nymbles and trapdoors. The same structure was used by Ohkubo
et al. [24] for securing RFID tags by ensuring both indistinguishability and forward secu-
rity of the tags. Although the primitive we use in this paper shares similarities with that
in [24], our construction possesses different security requirements that must be satisfied
to secure our system as a whole. In particular, the hash structure in Ohkubo et al. [24]
satisfies Indistinguishability and Forward Security, both of which are captured by our se-
curity notion of Backward Anonymity. We formalize the Unforgeability requirement for
Nymble-Auth, which assumes a different trust model from that in [24]. Finally, we also
introduce a unique security requirement called Uncircumventable Forward Linkability.

As shown in Figure 3, trapdoors evolve throughout a linkability window using a trapdoor-
evolution function f . Specifically, the trapdoor for the next time period can be computed by
applying f to the trapdoor for the current time period. A nymble is evaluated by applying
the nymble-evaluation function g to its corresponding trapdoor. We will instantiate both f
and g with collision-resistant cryptographic hash functions in our construction. In essence,
it is easy to compute future nymbles starting from a particular trapdoor by applying f and
g appropriately, but infeasible to compute nymbles otherwise. Without a trapdoor, the se-
quence of nymbles appears unlinkable, and honest users can enjoy anonymity. Even when
a trapdoor for a particular time period is obtained, all the nymbles prior to that time period
remain unlinkable because it is infeasible to invert f and g. The NM seeds the sequence
of trapdoors (and hence the nymbles) with its secret, the user’s ID, the server’s ID and
the linkability window’s ID of the requested connection. Seeds are therefore specific to
source-destination-window combinations. As a consequence, a trapdoor is useful only for
a particular website to link a particular user (or more specifically an IP address) during a
particular linkability window.

8

Parameters. Let λ ∈ N be a sufficiently large security parameter. Let f and g be secure
cryptographic hash functions, H be a secure keyed hash, HMAC be a secure keyed-hash
message authentication code (HMAC), and Enc be a secure symmetric encryption, such
that their security parameters are polynomial in λ. Let |S| denote the number of servers.

Protocol Details. Now we detail each protocol in Nymble-Auth.

• (nmsk , (hmkNS1 , . . . , hmkNS|S|))← Setup(1λ).
To set up the system, the NM picks, all uniformly at random from their respective
key-spaces,
1. a key khkN for keyed hash function H ,
2. a key sekN for secure symmetric encryption Enc, and
3. |S|+ 1 keys hmkN and hmkNS1 , hmkNS2 , . . . , hmkNS|S| for HMAC,

and sets its secret key nmsk as (khkN , sekN , hmkN , hmkNS1 , . . . , hmkNS|S|). The
NM stores nmsk privately and, for each server Sj , sends hmkNSj to Sj through a
secure channel. Each Sj then stores its secret key sskj as (hmkNSj) privately.
• nymbleTKT← NymbleTktGennmsk (id, j, k, `).

To generate a nymble ticket that allows a user with identity id to authenticate to server
Sj during time period T` of linkability window Wk, the NM computes the following
using its secret key nmsk :
1. seed← HkhkN

(id, j, k), the seed for trapdoor evolution,
2. tdr← f (`)(seed), the trapdoor for T`,
3. nymble← g(tdr), the nymble for the same time period,
4. tdr||id← Enc.encryptsekN

(tdr||id), a ciphertext that only the NM can decrypt,
5. macN ← HMAChmkN

(j||k||`||nymble||tdr||id), the HMAC for the NM,
6. macNS ← HMAChmkNSj

(j||k||`||nymble||tdr||id||macN), the HMAC for Sj .

Finally the NM returns nymbleTKT as 〈j, k, `, nymble, tdr||id, macN , macNS〉.
• valid/invalid← ServerVerifysskj

(k, `, nymbleTKT).
To verify if a nymble ticket nymbleTKT = 〈j′, k′, `′, nymble, tdr||id, macN , macNS〉
is valid for authenticating to server Sj at time period T` during linkability window
Wk, Sj does the following using its key sskj :
1. return invalid if (j, k, `) 6= (j′, k′, `′), or

HMAChmkNSj
(j′||k′||`′||nymble||tdr||id||macN) 6= macNS,

2. return valid otherwise.
• valid/invalid← NMVerifynmsk(j, k, `, nymbleTKT).

To verify if a nymble ticket nymbleTKT = 〈j′, k′, `′, nymble, tdr||id, macN , ·〉 is
valid for authenticating to server Sj at time period T` during linkability window Wk,
the NM does the following using its key nmsk:
1. return invalid if (j, k, `) 6= (j′, k′, `′), or

HMAChmkN
(j′||k′||`′||nymble||tdr||id) 6= macN ,

2. return valid otherwise.
• linkingTKN/⊥ ← LinkingTknExtnmsk (j, k, `∗, nymbleTKT).

To extract the linking token from a nymble ticket nymbleTKT = 〈·, ·, `, ·, tdr||id, ·, ·〉
for server Sj’s use at time period T`∗ during linkability window Wk, the NM does the
following using his secret key nmsk :
1. return ⊥ if `∗ < ` or NMVerifynmsk(j, k, `, nymbleTKT) = invalid,

9

2. compute tdr||id← Enc.decryptsekN
(tdr||id),

3. pick tdr∗ uniformly at random from the range of f if a linking token has already
been issued for the (id, j, k)-tuple, otherwise compute tdr∗ as f (`∗−`)(tdr) and
record that a linking token has been issued for the (id, j, k)-tuple,5

4. return linkingTKN as 〈j, k, `∗, tdr∗〉.
• linked/not-linked← Link(nymbleTKT, linkingTKN).

To test if a nymble ticket nymbleTKT = 〈j, k, `, nymble, ·, ·, ·〉 is linked by the linking
token linkingTKN = 〈j′, k′, `′, tdr′〉, anyone can do the following:
1. return not-linked if (j, k) 6= (j′, k′) or ` < `′, or if g(f (`−`′)(tdr)) 6= nymble,
2. return linked otherwise.

Security Analysis. We formalize the notions of Correctness, Unforgeability, Backward
Anonymity and Uncircumventable Forward Linkability in Appendix A.1. We now state
the following theorem about the security of Nymble-Auth, and sketch its proof in Ap-
pendix A.2.

Theorem 1. Our Nymble-Auth construction is secure in the Random Oracle Model.

5 The NYMBLE System

We now describe the full construction of our system, focusing on the various interactions
between the Pseudonym Manager (PM), the Nymble Manager (NM), the servers and the
users.

Parameters. In addition to those in the Nymble-Auth module, parameters in the NYMBLE
system include the description of an additional secure cryptographic hash function h and
a secure signature scheme Sig with security parameters polynomial in λ. Also, T denotes
the duration of one time period and L denotes the number of time periods in one linkability
window. Let t0 be the system start time.

5.1 System Setup

In this procedure, the NM and the PM set up the NYMBLE system together. The PM picks
a key khkP for keyed hash function H uniformly at random from the key-space. The NM,
on the other hand, does the following:

1. execute Setup of Nymble-Auth on some sufficiently large security parameter λ, after
which the NM gets its secret key nmsk and each server Sj gets its own secret key
sskj as described in the previous section,

2. generate a private/public-key-pair (x, y) for Sig using its key generation algorithm,
3. pick an HMAC key hmkNP for HMAC uniformly at random from the key-space and

share it with the PM over a secure channel, and
4. give each server Sj an empty blacklist BLj = 〈j, 1, 〈⊥〉,⊥, σ〉 through a secure chan-

nel, where σ is the signature generated as Sig.signx(j||1||1). Why the blacklist is for-
matted this way will become clear soon.

At the end of this procedure, the PM stores (khkP , hmkPN) privately, while the NM
stores (nmsk, x, hmkPN) privately and publishes the signature public key y. Also, each
server Sj stores sskj privately.

5 In Section 5.5, we will show how state about issued trapdoors is offloaded to servers.

10

5.2 User Registration

In this procedure, user Alice interacts with the PM in order to register herself to the
NYMBLE system for linkability window k. Alice obtains a pseudonym from the PM upon
a successful termination of such an interaction. The communication channel between them
is confidential and PM-authenticated.

To register, Alice authenticates herself as a user with identity id to the PM by demon-
strating her control over some resource(s) as discussed, after which the PM computes
pnym← HkhkP

(id, k) and macPN ← HMAChmkNP
(pnym, k), and returns 〈pnym, macPN 〉

to Alice, who stores it privately.

5.3 Acquisition of Nymble Tickets

In order for Alice to authenticate to any server Sj during any linkability window Wk, she
must present a nymble ticket to the server. The following describes how she can obtain
a credential from the NM containing such tickets. The communication channel is anony-
mous (e.g., through Tor), confidential and NM-authenticated.

Alice sends her 〈pnym, macPN 〉 to the NM, after which the NM:

1. asserts that macPN = HMAChmkNP
(pnym, k),

2. computes nymbleTKT` ← NymbleTktGennmsk (pnym, j, k, `), for ` = 1 to L, and
3. returns cred as 〈seed, nymbleTKT1, nymbleTKT2, . . . , nymbleTKTL〉, where seed =

HkhkN
(pnym, j, k) is the seed used within NymbleTktGen.

Alice may acquire credentials for different servers and different linkability windows at
any time. She stores these credentials locally before she needs them.

Efficiency. This protocol has a timing complexity of O(L).6 All the computations are
quick symmetric operations—there are two cryptographic hashes, two HMACs and one
symmetric encryption per loop-iteration A credential is of size O(L).

5.4 Request for Services

At a high level, a user Alice presents to server Bob the nymble ticket for the current time
period. As nymble tickets are unlinkable until servers complain against them (and thereby
blacklisting the corresponding user or IP address), Alice must check whether she is on
Bob’s blacklist, and verify its integrity and freshness. If Alice decides to proceed, she
presents her nymble ticket to Bob, and Bob verifies that the nymble ticket is not on his
blacklist. Bob also retains the ticket in case he wants to later complain against the current
access. For example, Wikipedia might detect a fraudulent posting several hours after it has
been made. The nymble ticket associated with that request can be used to blacklist future
accesses by that user.

Each server in the system maintains two data structures, the blacklist BL and the
linking-list LL, to handle blacklisting-related mechanisms to be described below. BL is

6 A naı̈ve implementation would involve a two-level for-loop with O(L2) complexity at the NM.
However, such a loop can be trivially collapsed into single-level, with O(L) complexity instead.

11

in the form of 〈j, k, 〈entry1, . . . , entryv〉, digest, σ〉, where each entry entrym =
〈m, nymbleTKTm, Tm〉. LL is a list of 〈tm, tdrm, nymblem〉 entries.

The following describes in detail the protocol, during which Alice wants to access the
service provided by server Bob (Sj) at time period T` during linkability window Wk. She
will need to make use of seed and nymbleTKT` in cred, which is the credential she ob-
tained from the NM earlier for accessing Bob’s service within window Wk. The communi-
cation channel between Alice and the NM is NM-authenticated and anonymous (through
Tor), while that between Alice and Bob is secure, server-authenticated and anonymous
(through Tor).

1. (Blacklist Request.) Upon receiving Alice’s request, Bob returns to Alice his cur-
rent blacklist BL, where BL = 〈·, ·, 〈entry1, . . . , entryv〉, ·, σ〉, each entrym =
〈m, nymbleTKTm, Tm〉 and each nymbleTKTm = 〈·, ·, ·, nymblem, ·, ·, ·〉.7 As de-
scribed earlier, each entry corresponds to a blacklisted user, where nymbleTKTm was
the nymble ticket used by that user in time period Tm.

2. (Version-number Request.) Upon receiving Alice’s request, the NM returns vj , the
current version number of Bob’s blacklist recorded by the NM.

3. (Blacklist Inspection.) Alice terminates immediately as failure if:
• Sig.Verifyy(j||k||vj ||h(. . . h(h(entry1)||entry2) . . . ||entryv), σ) = invalid,8

i.e., the blacklist is not authentic or not intact, or
• g(f (Tm)(seed)) = nymblem for some m ∈ {1, . . . , v},9 i.e., Alice has been

blacklisted.
Otherwise she sends nymbleTKT` = 〈·, ·, ·, nymble, ·, ·, ·〉 to Bob.

4. (Ticket Inspection.) Bob returns failure if:
• ServerVerifysskj

(k, `, nymbleTKT) = invalid, i.e., the ticket is invalid, or
• nymble appears in his linking-list LL, i.e. the connecting user has already been

blacklisted.
Otherwise Bob grants Alice’s request for service and starts serving Alice. Bob records
nymbleTKT` along with appropriate access log for potentially complaining about that
connection in the future.

Efficiency. Recall that v is the size of Bob’s blacklist. Blacklist integrity checking is of
O(v) in time. Again, all cryptographic operations in each loop-iteration are symmetric
and there is only one digital verification at the end, independent of v. Checking if being
linked has a time complexity of O(vL) at the user in the worst case, but all computations
involved are simple hashes. Also, one could trade off space to make it O(v) instead. Time
complexity of nymble matching at the server is linear in the size of the Linking-list using
linear search. But efficient data structures exist which can make these steps logarithmic or
even constant (e.g., using hash tables).

7 If Bob doesn’t want to use the NYMBLE system for this request, he may skip the rest of the
protocol and start serving (or denying) Alice immediately.

8 By remembering an older digest if Alice has accessed Bob earlier within the same window, Alice
can instead compute only part of the recursive hash above.

9 This step may be sped up by trading off space by storing the original nymble tickets issued in the
user’s credential, making this step a simple lookup.

12

5.5 Complaining

By presenting to the NM the nymble ticket associated with an access in which Bob thinks
the user misbehaved, Bob obtains a linking token that will allow him to link all future
nymble tickets for that user.10 The following enumerates the protocol, during which server
Bob (Sj) complains about nymbleTKT. The communication between Bob and the NM is
conducted over a secure channel. Let the time of complaint be at time period T` during
linkability window Wk, where ` < L, i.e. the complaint is not during the last period of a
linkability-window.

1. (Complaining.) Bob sends to the NM the nymble ticket nymbleTKT = 〈·, ·, `′, ·, ·, ·, ·〉
he wants to complain about and 〈digest, σ〉 from his current blacklist BL.

2. (Complaint Validation.) The NM rejects a complaint if
• NMVerifynmsk(j, k, `′, nymbleTKT) = invalid, i.e., the ticket is invalid, or
• Sig.verifyy(j||k||vj ||digest, σ) = invalid, where vj is the version number of

Bob’s blacklist recorded by NM, i.e. the (digest of) Bob’s blacklist is not authen-
tic, intact or fresh.

The NM proceeds otherwise.
3. (Linking-token Issuing.) The NM computes the following:
• linkingTKN← LinkingTknExtnmsk (j, k, ` + 1, nymbleTKT),
• entry′ ← (vj + 1, nymbleTKT, `), digest′ ← h(digest||entry′) and then

σ′ ← Sig.signx(j||k||vj + 1||digest′).
The NM increments vj by 1 and returns 〈linkingTKN, entry′, digest′, σ′〉 to Bob.

4. (List Update.) Bob updates his blacklist BL and linking-list LL as follows:
• In BL, Bob increments v by 1, inserts entry′ as the last entry, and updates σ to σ′

and digest to digest′.
• In LL, Bob appends a new entry 〈` + 1, tdr, nymble〉, where tdr is the trapdoor

in linkingTKN and nymble← g(tdr).

Efficiency. The NM’s timing complexity is O(L + v). The O(L) is due to a call to
LinkingTknExt, which involves only hashing or HMAC operations. Verifying if a linking
token has already been issued for the user involves O(v) symmetric decryption operations.
Signing one digital signature is the only asymmetric cryptographic operation.

5.6 Update

Misbehavior is forgiven every time the system enters a new linkability window. Users who
misbehaved previously can then connect to websites anonymously until they misbehave
and are complained against again. The nymble tickets, linking tokens, and pseudonyms
that are specific to one linkability window become useless when the system enters a new
window. Consequently, servers empty their blacklists and linking-lists while NM resets all
version numbers to zero at the end of every linkability window. Moreover, the NM also
issues empty blacklists to the servers in the same way as in the System Setup procedure.
10 Here “future” means starting from the next time period, rather than the same period immediately

after the complaint. This prevents race conditions such as when a user has inspected that she is
not blacklisted by Bob and is about to present her nymble ticket, but in the meantime Bob obtains
a linking-token for the current time period.

13

At the end of each time period T`′ that is not the last one in a linkability window, each
server updates its linking-list LL by replacing every entry 〈`, tdr`, nymble`〉 such that
` = `′ with the entry 〈`+1, f(tdr`), g(f(tdr`))〉. Only hashing is required to accomplish
this and the number of hash operations involved is two times the size of LL.

6 Evaluation

We chose to implement our system using PHP because of its popularity for interactive web
sites (including MediaWiki, the software behind Wikipedia). PHP contains both built-in
cryptographic primitives (e.g., SHA-1 hashing) as well as an interface to the OpenSSL
cryptographic library; we used both as appropriate to maximize performance. Addition-
ally, we chose to use a relational database to store blacklists and blacklist versions because
the interface is convenient in PHP and database servers are generally available in the envi-
ronments in which we envision the Nymble system being used.

We picked SHA-256 [21] for collision-resistant hash functions f , g and h; HMAC-
SHA-1 [23] with 160-bit keys for both keyed hash function H and keyed-hash message
authentication code HMAC; AES-256 in OFB mode with block size of 32 bytes [22] for
symmetric encryption Enc; and 1024-bit RSA [20] for digital signature Sig. We chose
RSA over DSA for digital signatures because of its higher signature verification speed—
in our system, signature verification occurs more often than signing.

Our implementation consists of separate modules to be deployed to the Pseudonym
Manager, the Nymble Manager, and servers, as well as common modules for database ac-
cess and cryptographic operations. Orthogonal to the correctness of the system, we felt
deployability was also an important goal, and to that end we attempted to minimize modi-
fications required to “Nymble-protect” existing applications.

Applications wishing to use our system include a single PHP file defining two func-
tions: nymbletkt is required(ip) and nymbletkt is valid(nymbletkt).
The former determines whether an operation from a particular IP address requires a nymble
ticket; the second determines whether the supplied nymble ticket is valid for the current
time period. Hence the only modifications necessary are to supply a nymble ticket input
field if it is required and to verify the nymble ticket when it is submitted.

To test the system, a single machine acted as Pseudonym Manager, Nymble Manager,
and server, running PHP 5.1.6, PostgreSQL 8.1, and Apache 2.0.55, atop a default install
of Ubuntu 6.10 and Linux 2.6.17 with SMP enabled. The machine itself was an Intel Core
2 Duo 6300 (2 cores at 1.86 GHz each) and 1 GB memory. Clients of various hardware
configurations accessed the server via the local network.

Table 1 shows the speed of operations important to both end-users and server admin-
istrators evaluating the Nymble system. Experiments were run 50 times and the results
averaged. The all-ticket credentials generated were for 1-day linkability windows with
5-minute time periods, thus consisting of 288 nymble tickets. We also measured perfor-
mance with single-ticket credentials containing the ticket for only the time period in which
access to a service was requested. Single-ticket credentials are much more efficient to gen-
erate, but the NM learns all the time periods (as opposed to only the first time period)
when connections are made by the pseudonymous users. The nymble ticket verification
step is the added overhead required during a single user action, visible to both the server

14

and the client. The linking token generation is the operation carried out by NM when a
server complains. Every time period, each server must iterate every entry in its blacklist;
our measurement reflects the time required for a single server to iterate 100 entries.

Table 1. Timing measurements

Operation Executed by Time
All-ticket credential generation (288 nymbleTKTs) NM 224 ms
Single-ticket credential generation (1 nymbleTKT) NM 1.1 ms
Nymble ticket verification (Verify) Server 1 ms
Linking token generation (LinkingTknExt) NM 15 ms
Blacklist update Server 8 ms

We believe the all-ticket credential generation time of 224ms is reasonable for a net-
work like Tor, especially since nymble tickets will be needed only for restricted actions
such as edits on Wikipedia—latest data indicate that about two edits per second to Wikipedia’s
English pages.11 We expect much fewer edits to be made via Tor. If all-ticket credential
generation proves to be a bottleneck, the NM can issue single-ticket credentials to drasti-
cally reduce the load. We expect the measured time of 1.1ms for generating single-ticket
credentials to be more than sufficient.

We have implemented a Firefox extension that automatically obtains a pseudonym
from the PM, obtains a credential for a server when needed, verifies the server’s blacklist,
chooses the correct nymble ticket for the current time period, and inserts it into an HTML
form every time the user wishes to traverse a protected page. We assume that the NM is the
arbiter of time, and the user and servers can obtain the current time period and linkability
window from the NM. For example, when a user obtains the current version number for a
particular website’s blacklist, the user also learns the current time period.

Finally, we emphasize the NYMBLE system also scales well in terms of space com-
plexities. Credentials that users store are of size 20 + 148L bytes each, or 42KB when
L = 288. The blacklist has a size of 168 + 152v bytes, where v is the number of users
blacklisted by the server during the current linkability window. Most importantly, the
amount of data the NM has to maintain is minimal, namely only one 32-bit integer per
registered server for storing the server’s current version number.

7 Discussion

IP-address blocking. As described in Section 3, users demonstrate control over an IP
address by connecting to the PM directly. Since this connection is made without Tor, some
users may object to the temporary loss of anonymity. It is important to provide users with
an accurate portrayal of the associated risks (and benefits) before using our system.

There are some inherent limitations to using IP addresses as the scarce resource. If
a user can obtain multiple IP addresses she can circumvent nymble-based blocking and
continue to misbehave. We point out, however, that this problem exists in the absence

11 http://stats.wikimedia.org/EN/PlotsPngDatabaseEdits.htm

15

of anonymizing networks as well, and the user would be able to circumvent regular IP-
address based blocking using multiple IP addresses. Some servers alleviate this problem
with subnet-based IP blocking, and while it is possible to modify our system to support
subnet-blocking, new privacy challenges emerge; a more thorough description of subnet-
blocking is left for future work. Another limitation is that a user Alice may acquire nymbles
for a particular IP address and then use them at a later time (to misbehave) within the
linkability window even after she has relinquished control over that IP address. This type of
attack allows Alice a little more flexibility—with regular IP-based blocking, Alice would
have to perform misbehaviors while in control of the various IP addresses.

Some other resource may be used to acquire pseudonyms, but we believe IP-address
blocking is still the most pragmatic approach in today’s Internet. Our approach closely
mimics IP-address blocking that many servers on the Internet rely on routinely. Some
may be concerned that users can misbehave through Tor after their IP address has been
blocked, effectively allowing them to misbehave twice before being blocked (once using
regular IP-address blocking, and once using Nymble). We argue, however, that servers
concerned about this problem could require Nymble-based authentication from all users,
whether or not they connect through an anonymizing network.

Time periods and linkability windows. Since nymbles are associated with time periods, it
is desirable to keep the duration T of time periods small. On the other hand, larger values
of T can be used to limit the rate of anonymous connections by a user. Since users remain
blacklisted for the remainder of the linkability window after a complaint, it is desirable to
keep the duration of the linkability window L long enough to curtail the malicious user’s
activities, but not so long as to punish that user (or honest users to whom the IP address
may get reassigned) indefinitely. In our example we suggested T = 5 min and L = 1 day,
but further experimentation is needed to determine reasonable values for these parameters.

Server-specific linkability windows. An enhancement would be to provide support to vary
T andL for different servers. As described, our system does not support varying linkability
windows, but does support varying time periods. This is because the PM is not aware of
the server to which the user wishes to connect, yet it must issue pseudonyms specific to a
linkability window. In our system, therefore, the linkability window must be fixed across
all servers. Supporting varying time periods is easy, and the NM can be modified to issue
the appropriate set of nymble tickets based on the servers’ parameters.

8 Conclusion

We present a system that allows websites to selectively block users of anonymizing net-
works such as Tor. Using our system, websites can blacklist users without knowing their IP
addresses. Users not on the blacklist enjoy anonymity, while blacklisted users are blocked
from making future accesses. Furthermore, blacklisted users’ previous connections remain
anonymous. Since websites are free to blacklist anonymous users of their choice, and since
users are notified of their blacklisting status, our system avoids the complications associ-
ated with judging “misbehavior.” We believe that these properties will enhance the ac-
ceptability of anonymizing networks such as Tor by enabling websites to selectively block
certain users instead of blocking the entire network, all while allowing the remaining (hon-
est) users to stay anonymous.

16

Acknowledgments

This paper greatly benefited from discussions with Sergey Bratus, Alexander Iliev, and
Anna Shubina. We also thank Roger Dingledine, Paul Syverson, Parisa Tabriz, Seung Yi,
and the anonymous reviewers for their helpful comments.

References

1. Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Mihir Bellare, editor, CRYPTO, volume
1880 of LNCS, pages 255–270. Springer, 2000.

2. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general assumptions.
In Eli Biham, editor, EUROCRYPT, volume 2656 of LNCS, pages 614–629. Springer, 2003.

3. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of
dynamic groups. In Alfred Menezes, editor, CT-RSA, volume 3376 of LNCS, pages 136–153.
Springer, 2005.

4. Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract). In
Douglas R. Stinson, editor, CRYPTO, volume 773 of LNCS, pages 302–318. Springer, 1993.

5. Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and Mira
Meyerovich. How to win the clonewars: efficient periodic n-times anonymous authentication. In
Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM Conference
on Computer and Communications Security, pages 201–210. ACM, 2006.

6. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In Ronald
Cramer, editor, EUROCRYPT, volume 3494 of LNCS, pages 302–321. Springer, 2005.

7. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT, vol-
ume 2045 of LNCS, pages 93–118. Springer, 2001.

8. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Matthew K. Franklin, editor, CRYPTO, volume 3152 of LNCS, pages 56–72.
Springer, 2004.

9. David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Commu-
nications of the ACM, 4(2), February 1981.

10. David Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199–203, 1982.
11. David Chaum. Showing credentials without identification transfeering signatures between

unconditionally unlinkable pseudonyms. In Jennifer Seberry and Josef Pieprzyk, editors,
AUSCRYPT, volume 453 of LNCS, pages 246–264. Springer, 1990.

12. David Chaum and Eugène van Heyst. Group signatures. In EUROCRYPT, pages 257–265,
1991.

13. Lidong Chen. Access with pseudonyms. In Ed Dawson and Jovan Dj. Golic, editors, Cryptog-
raphy: Policy and Algorithms, volume 1029 of LNCS, pages 232–243. Springer, 1995.

14. Ivan Damgård. Payment systems and credential mechanisms with provable security against
abuse by individuals. In Shafi Goldwasser, editor, CRYPTO, volume 403 of LNCS, pages 328–
335. Springer, 1988.

15. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-Generation Onion
Router. In Usenix Security Symposium, pages 303–320, August 2004.

16. John R. Douceur. The sybil attack. In Peter Druschel, M. Frans Kaashoek, and Antony I. T.
Rowstron, editors, IPTPS, volume 2429 of LNCS, pages 251–260. Springer, 2002.

17

17. Jason E. Holt and Kent E. Seamons. Nym: Practical pseudonymity for anonymous networks.
Internet Security Research Lab Technical Report 2006-4, Brigham Young University, June 2006.

18. Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures. In Christian Cachin
and Jan Camenisch, editors, EUROCRYPT, volume 3027 of LNCS, pages 571–589. Springer,
2004.

19. Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In
Howard M. Heys and Carlisle M. Adams, editors, Selected Areas in Cryptography, volume 1758
of LNCS, pages 184–199. Springer, 1999.

20. NIST. FIPS 186-2: Digital signature standard (DSS). Technical report, National Institute of
Standards and Technology (NIST), 2000. http://csrc.nist.gov/publications/
fips/fips186-2/fips186-2-change1.pdf.

21. NIST. FIPS 180-2: Secure hash standard (SHS). Technical report, National Institute of
Standards and Technology (NIST), 2001. http://csrc.nist.gov/publications/
fips/fips180-2/fips180-2withchangenotice.pdf.

22. NIST. FIPS 197: Announcing the advanced encryption standard (AES). Technical report, Na-
tional Institute of Standards and Technology (NIST), 2001. http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf.

23. NIST. FIPS 198: The keyed-hash message authentication code (HMAC). Technical report,
National Institute of Standards and Technology (NIST), 2002. http://csrc.nist.gov/
publications/fips/fips198/fips-198a.pdf.

24. Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. Cryptographic approach to “privacy-
friendly” tags. In RFID Privacy Workshop, MIT, MA, USA, November 2003.

25. Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for Web Transactions. ACM Trans-
actions on Information and System Security, 1(1):66–92, November 1998.

26. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor,
ASIACRYPT, volume 2248 of LNCS, pages 552–565. Springer, 2001.

27. Paul F. Syverson, Stuart G. Stubblebine, and David M. Goldschlag. Unlinkable serial trans-
actions. In Rafael Hirschfeld, editor, Financial Cryptography, volume 1318 of LNCS, pages
39–56. Springer, 1997.

28. Isamu Teranishi, Jun Furukawa, and Kazue Sako. k-times anonymous authentication (ex-
tended abstract). In Pil Joong Lee, editor, ASIACRYPT, volume 3329 of LNCS, pages 308–322.
Springer, 2004.

29. Patrick P. Tsang, Apu Kapadia, and Sean W. Smith. Anonymous IP-address blocking in tor
with trusted computing (work-in-progress). In The Second Workshop on Advances in Trusted
Computing (WATC ’06 Fall), November 2006.

30. Luis von Ahn, Andrew Bortz, Nicholas J. Hopper, and Kevin O’Neill. Selectively traceable
anonymity. In George Danezis and Philippe Golle, editors, Privacy Enhancing Technologies,
volume 4258 of LNCS, pages 208–222. Springer, 2006.

A Security Model, Proofs and Analysis

A.1 Security Model for Nymble-Auth

Correctness means the system functions as intended when all entities are honest. Unforge-
ability guarantees that valid nymble tickets can only be obtained from NM. Backward
Anonymity makes sure nymble tickets are anonymous without an associated trapdoor and
remain anonymous even with an associated trapdoor as long as that trapdoor is meant for a
time period later than the nymble tickets. Finally, Uncircumventable Forward Linkability
says that valid nymble tickets are always linked to an associated trapdoor meant for a time
prior to those nymble tickets.

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

18

Definition 1 (Correctness). A Nymble-Auth construction is correct if it has Verification
Correctness and Linking Correctness, defined as follows:

• (Verification Correctness.) If all entities in the system are honest (i.e. they execute
the algorithms according to the system specification), then ServerVerify returns 1 (in-
dicating valid) on any nymbleTKT output by NymbleTktGen, with overwhelming
probability.

• (Linking Correctness.) If all entities in the system are honest, then Link returns linked
on any linkingTKN generated by LinkingTknExt(i, j, k, `) and any nymbleTKT gen-
erated by NymbleTktGen(i′, j′, k′, `′) if and only if (i, j, k) = (i′, j′, k′) and j ≤ j′,
with overwhelming probability.

ut

We describe three oracles before defining various security games. The existence of the
oracles models the adversary’s capability in the real world of learning as much information
about the nymbles and trapdoors as possible by probing the system. They are:

• OTKT (i, j, k, `), or the Ticket Oracle. It returns nymbleTKTi,j,k,`, the nymble ticket
as output by the NymbleTktGen algorithm on input (i, j, k, `),
• OTKN (nymbleTKT, `), or the Token Oracle. It returns the linking token linkingTKNi,j,k,`

as output by the LinkingTknExt algorithm on input (nymbleTKT, `), and
• OK(j), or the Server Corruption Oracle. It returns kNSj , the symmetric key of server

Si as output by the Setup algorithm.

Definition 2 (Unforgeability). A Nymble-Auth construction is Unforgeable if no Proba-
bilistic Poly-Time (PPT) adversary A can win the following game against the Challenger
C with non-negligible probability:

1. (Setup Phase.) C executes Setup(1λ) on a sufficiently large λ, keeps nmsk secret and
gives nmpk to A.

2. (Probing Phase.)Amay arbitrarily and adaptively query three oraclesOTKN (nymbleTKT, `),
OTKT (i, j, k, `) and OK(j).

3. (End Game Phase.)A returns 〈j∗, k∗`∗, nymbleTKT∗〉.Awins the game if nymbleTKT∗

is not an output of a previous OTKT (·, ·, ·, ·) query, A did not query OK(j∗) and
VerifykNSj∗

(j∗, k∗, `∗, nymbleTKT∗) = 1.
ut

That is, A should not be able to forge a valid nymbleTKT without the NM’s secret param-
eters.

Definition 3 (Backward Anonymity). A Nymble-Auth construction has Backward Anonymity
if no PPT adversary A can win the following game against the Challenger C with proba-
bility non-negligibly greater than 1/2:

1. (Setup Phase.) C executes Setup on a sufficiently large security parameter, keeps
nmsk secret, and gives nmpk to A.

2. (Probing Phase I.)Amay arbitrarily and adaptively query the three oraclesOTKT (·, ·, ·, ·),
OTKN (·, ·) and OK(·).

19

3. (Challenge Phase.) A decides on positive integers i∗0, i
∗
1, j

∗, k∗, `∗ such that the fol-
lowing conditions hold:
• For all queries OTKT (i, j, k, `), for each b ∈ {0, 1} we have that (i, j, k, `) 6=

(i∗b , j
∗, k∗, `∗), i.e., A has not already obtained any of the challenge nymbleTKTs

from OTKT .
• For all queries OTKN (·, `), ` > `∗, i.e. all trapdoors obtained are of time periods

greater than the challenge nymble tickets.
• For each b ∈ {0, 1}, for all queries OTKT (i1, j1, k1, `1) where (i1, j1, k1) =

(i∗b , j
∗, k∗) and queriesOTKN (nymbleTKT, `) where nymbleTKT is the output of

some query OTKT (i2, j2, k2, `2) such that (i2, j2, k2) = (i∗b , j
∗, k∗), `1 < `, i.e.

the adversary is not allowed to query for a linking token and a nymble ticket such
that the trapdoor within the linking token can be used to link the nymble ticket.12

Then C flips a fair coin b∗ ∈R {0, 1} and returns A with

〈nymbleTKTib∗ ,j∗,k∗`∗ , nymbleTKTifb∗ ,j∗,k∗,`∗〉,

where b̃∗ is the negation of b∗.
4. (Probing Phase II.) A may arbitrarily and adaptively query the three oracles, except

that the conditions above must still hold.
5. (End Game Phase.) A returns guess b̂ ∈ {0, 1} on b∗. A wins if b̂ = b∗.

ut
That is, A should not be able to link nymbleTKTs without the appropriate linkingTKN.

Definition 4 (Uncircumventable Forward Linkability). A Nymble-Auth construction
has Uncircumventable Forward Linkability if no PPT adversary can win the following
game she plays against the Challenger C with non-negligible probability:

1. (Setup Phase.) C executes Setup on a sufficiently large security parameter, keeps nmsk
secret and gives nmpk to A.

2. (Probing Phase.)Amay arbitrarily and adaptively query the three oraclesOTKN (i, j, k, `),
OTKT (i, j, k, `) and OK(j), where i, j, k, ` ≥ 1.

3. (End Game Phase.) A returns 〈j∗, k∗, `∗0, `∗1, nymbleTKT∗0, nymbleTKT∗1, `∗〉. A wins
the game if Verify(j∗, k∗, `∗b , nymbleTKT

∗
b) = 1 for b ∈ {0, 1}, `∗0 ≤ `∗ ≤ `∗1, A did

not query OK(·) on j∗ and

Link(nymble∗1,TrapdoorExt(nymble∗0, `
∗)) = 0.

ut
That is,A cannot obtain two nymbleTKTs for any server such that they are unlinkable, but
should have otherwise been linkable, with the appropriate linkingTKN.

A.2 Security Proofs for Nymble-Auth

Proof (Theorem 1). (Sketch.) We prove the theorem by showing our Nymble-Auth con-
struction is correct, unforgeable, backward anonymous and uncircumventably forward
linkable. Due to page limitation, we gives only proof sketches here.
12 This restriction is justified because we will use Nymble-Auth in such a way that a user will never

present a nymble ticket again to a server once the server has acquired a linking token for that user.

20

CORRECTNESS. Correctness of Nymble-Auth is straightforward. Namely, verification cor-
rectness is implied by the correctness of the HMAC HMAC. Linking correctness is implied
by the determinism and collision-resistance of hash functions f, g.
UNFORGEABILITY. Our Nymble-Auth construction has unforgeability due to the security
of HMAC, which guarantees that without the knowledge of the associated key, no PPT ad-
versary can produce a valid MAC on any input string, even if the adversary learns arbitrary
input-output HMAC pairs. As a result, any PPT in our construction is allowed to query the
oracle for arbitrary nymble tickets and yet is unable to produce a new one with a correct
MAC on it.
BACKWARD ANONYMITY. Our Nymble-Auth construction has backward anonymity due
to the security of the symmetric encryption Enc and the collision-resistance of the hash
functions f and g. The only pieces within a nymble ticket that are correlated to user iden-
tities are the nymble and the encrypted trapdoor. The security of Enc guarantees that ci-
phertexts leak no information about their underlying plaintexts to any PPT adversary, so
that the encrypted trapdoor is computationally uncorrelated to the underlying trapdoor and
thus the identity of the user to which the nymble ticket belongs. The nymble is the output
of g(·) on its associated trapdoor, which is in turn the output after a series of application
of f(·) on a seed dependent on the user identity. Under the Random Oracle Model, hash
function outputs are random (but consistent), therefore the nymbles are distinguishable
from random strings in the view of an adversary who does not have any trapdoor for the
user-server-window tuple to which nymbles in the challenge nymble tickets are associated.

Knowing one or more associated trapdoors does not help the adversary in winning
the game as the trapdoors are also indistinguishable from random values. This is the case
because all except the first linking token returned byOTKN contain a true random value as
the trapdoor. The first linking token contains a genuine trapdoor, but it is indistinguishable
from a random value because f(·) and g(·) are random oracles and the adversary is not
allowed to query OTKT for a nymble ticket and query OTKN for a linking token such
that the time period of the nymble ticket is greater than or equal to the time period of the
linking token.
UNCIRCUMVENTABLE FORWARD LINKABILITY. Our Nymble-Auth construction has Un-
circumventable Forward Linkability as a consequence of unforgeability and linking cor-
rectness. Specifically, assume there exists an PPT adversary who can break uncircum-
ventable forward linkability; then the two nymble tickets she output at the End Game
phase must be such that they are query outputs of the nymble ticket oracle, because oth-
erwise the adversary would have broken the unforgeability of Nymble-Auth, which leads
to a contradiction. Now since the two output nymble tickets are generated according to
specification, the linking algorithm will return linked on any trapdoor extracted from the
nymble ticket earlier in time period, which again leads to a contradiction. ut

	Nymble: Anonymous IP-Address Blocking
	Peter C. Johnson an dApu Kapadia an dPatrick P. Tsang an dSean W. Smith
	Introduction
	Related Work
	System overview
	The Nymble Authentication Module
	The Model
	Our Construction

	The NYMBLE System
	System Setup
	User Registration
	Acquisition of Nymble Tickets
	Request for Services
	Complaining
	Update

	Evaluation
	Discussion
	Conclusion
	Security Model, Proofs and Analysis
	Security Model for Nymble-Auth
	Security Proofs for Nymble-Auth

