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Abstract

The Tor network gives anonymity to Internet users by re-

laying their traffic through the world over a variety of

routers. All traffic between any pair of routers, even

if they represent circuits for different clients, are mul-

tiplexed over a single TCP connection. This results in

interference across circuits during congestion control,

packet dropping and packet reordering. This interference

greatly contributes to Tor’s notorious latency problems.

Our solution is to use a TCP-over-DTLS (Datagram

Transport Layer Security) transport between routers. We

give each stream of data its own TCP connection, and

protect the TCP headers—which would otherwise give

stream identification information to an attacker—with

DTLS. We perform experiments on our implemented

version to illustrate that our proposal has indeed resolved

the cross-circuit interference.

1 Introduction

Tor [2] is a tool to enable Internet privacy that has seen

widespread use and popularity throughout the world.

Tor consists of a network of thousands of nodes—

known as Onion Routers (ORs)—whose operators have

volunteered to relay Internet traffic around the world.

Clients—known as Onion Proxies (OPs)—build circuits

through ORs in the network to dispatch their traffic. Tor’s

goal is to frustrate an attacker who aims to match up

the identities of the clients with the actions they are per-

forming. Despite its popularity, Tor has a problem that

dissuades its ubiquitous application—it imposes greater

latency on its users than they would experience without

Tor.

While some increased latency is inevitable due to the

increased network path length, our experiments show

that this effect is not sufficient to explain the increased

cost. In Section 2 we look deeper, and find a component
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of the transport layer that can be changed to improve

Tor’s performance. Specifically, each pair of routers

maintains a single TCP connection for all traffic that is

sent between them. This includes multiplexed traffic for

different circuits, and results in cross-circuit interference

that degrades performance. We find that congestion con-

trol mechanisms are being unfairly applied to all circuits

when they are intended to throttle only the noisy senders.

We also show how packet dropping on one circuit causes

interference on other circuits.

Section 3 presents our solution to this problem—a new

transport layer that is backwards compatible with the ex-

isting Tor network. Routers in Tor can gradually and in-

dependently upgrade, and our system provides immedi-

ate benefit to any pair of routers that choose to use our

improvements. It uses a separate TCP connection for

each circuit, but secures the TCP header to avoid the dis-

closure of per-circuit data transfer statistics. Moreover, it

uses a user-level TCP implementation to address the is-

sue of socket proliferation that prevents some operating

systems from being able to volunteer as ORs.

Section 4 presents experiments to compare the exist-

ing Tor with our new implementation. We compare la-

tency and throughput, and perform timing analysis of our

changes to ensure that they do not incur non-negligible

computational latency. Our results are favourable: the

computational overhead remains negligible and our solu-

tion is successful in addressing the improper use of con-

gestion control.

Section 5 compares our enhanced Tor to other ano-

nymity systems, and Section 6 concludes with a descrip-

tion of future work.

1.1 Apparatus

Our experiments were performed on a commodity

Thinkpad R60—1.66 GHz dual core with 1 GB of RAM.

Care was taken during experimentation to ensure that the

system was never under load significant enough to influ-



ence the results. Our experiments used a modified ver-

sion of the Tor 0.2.0.x stable branch code.

2 Problems with Tor’s Transport Layer

We begin by briefly describing the important aspects of

Tor’s current transport layer. For more details, see [2].

An end user of Tor runs an Onion Proxy on her machine,

which presents a SOCKS proxy interface [7] to local ap-

plications, such as web browsers. When an application

makes a TCP connection to the OP, the OP splits it into

fixed-size cells which are encrypted and forwarded over

a circuit composed of (usually 3) Onion Routers. The

last OR creates a TCP connection to the intended desti-

nation host, and passes the data between the host and the

circuit.

The circuit is constructed with hop-by-hop TCP con-

nections, each protected with TLS [1], which provides

confidentiality and data integrity. The OP picks a first

OR (OR1), makes a TCP connection to it, and starts TLS

on that connection. It then instructs OR1 to connect to

a particular second OR (OR2) of the OP’s choosing. If

OR1 and OR2 are not already in contact, a TCP connec-

tion is established between them, again with TLS. If OR1

and OR2 are already in contact (because other users, for

example, have chosen those ORs for their circuits), the

existing TCP connection is used for all traffic between

those ORs. The OP then instructs OR2 to contact a third

OR, OR3, and so on. Note that there is not an end-to-end

TCP connection from the OP to the destination host, nor

to any OR except OR1.

This multi-hop transport obviously adds additional un-

avoidable latency. However, the observed latency of Tor

is larger than accounted for simply by the additional

transport time. In [12], the first author of this paper

closely examined the sources of latency in a live Tor

node. He found that processing time and input buffer

queueing times were negligible, but that output buffer

queueing times were significant. For example, on an in-

strumented Tor node running on the live Tor network,

40% of output buffers had data waiting in them from

100 ms to over 1 s more than 20% of the time. The

data was waiting in these buffers because the the operat-

ing system’s output buffer for the corresponding socket

was itself full, and so the OS was reporting the socket

as unwritable. This was due to TCP’s congestion control

mechanism, which we discuss next.

Socket output buffers contain two kinds of data:

packet data that has been sent over the network but is un-

acknowledged1, and packet data that has not been sent

due to TCP’s congestion control. Figure 1 shows the

1Recall that TCP achieves reliability by buffering all data locally

until it has been acknowledged, and uses this to generate retransmission

messages when necessary

size of the socket output buffer over time for a partic-

ular connection. First, unwritable sockets occur when

the remaining capacity in an output buffer is too small to

accept new data. This in turn occurs because there is al-

ready too much data in the buffer, which is because there

is too much unacknowledged data in flight and throt-

tled data waiting to be sent. The congestion window

(CWND) is a variable that stores the number of packets

that TCP is currently willing to send to the peer. When

the number of packets in flight exceeds the congestion

window then the sending of more data is throttled until

acknowledgments are received. Once congestion throt-

tles sending, the data queues up until either packets are

acknowledged or the buffer is full.

In addition to congestion control, TCP also has a flow

control mechanism. Receivers advertise the amount of

data they are willing to accept; if more data arrives at

the receiver before the receiving application has a chance

to read from the OS’s receive buffers, this advertised re-

ceiver window will shrink, and the sender will stop trans-

mitting when it reaches zero. In none of our experiments

did we ever observe Tor throttling its transmissions due

to this mechanism; the advertised receiver window sizes

never dropped to zero, or indeed below 50 KB. Conges-

tion control, rather than flow control, was the reason for

the throttling.

While data is delayed because of congestion control, it

is foolhardy to attempt to circumvent congestion control

as a means of improving Tor’s latency. However, we ob-

serve that Tor’s transport between ORs results in an un-

fair application of congestion control. In particular, Tor’s

circuits are multiplexed over TCP connections; i.e., a sin-

gle TCP connection between two ORs is used for multi-

ple circuits. When a circuit is built through a pair of un-

connected routers, a new TCP connection is established.

When a circuit is built through an already-connected pair

of ORs, the existing TCP stream will carry both the ex-

isting circuits and the new circuit. This is true for all

circuits built in either direction between the ORs.

In this section we explore how congestion control af-

fects multiplexed circuits and how packet dropping and

reordering can cause interference across circuits. We

show that TCP does not behave optimally when circuits

are multiplexed in this manner.

2.1 Unfair Congestion Control

We believe that multiplexing TCP streams over a sin-

gle TCP connection is unwise and results in the unfair

application of TCP’s congestion control mechanism. It

results in multiple data streams competing to send data

over a TCP stream that gives more bandwidth to circuits

that send more data; i.e., it gives each byte of data the

same priority regardless of its source. A busy circuit that
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Figure 1: TCP socket output buffer size, writability, and unacknowledged packets over time.

triggers congestion control will cause low-bandwidth cir-

cuits to struggle to have their data sent. Figure 2 il-

lustrates data transmission for distinct circuits entering

and exiting a single output buffer in Tor. Time increases

along the X-axis, and data increases along the Y-axis.

The main part of the figure shows two increasing line

shapes, each corresponding to the data along a different

circuit over time. When the shapes swell, that indicates

that Tor’s internal output buffer has swelled: the left edge

grows when data enters the buffer, and the right edge

grows when data leaves the buffer. This results in the

appearance of a line when the buffer is well-functioning,

and a triangular or parallelogram shape when data ar-

rives too rapidly or the connection is troubled. Addition-

ally, we strike a vertical line across the graph whenever a

packet is dropped.

What we learn from this graph is that the buffer serves

two circuits. One circuit serves one MB over ten min-

utes, and sends cells evenly. The other circuit is inactive

for the most part, but three times over the execution it

suddenly serves 200 KB of cells. We can see that each

time the buffer swells with data it causes a significant

delay. Importantly, the other circuit is affected despite

the fact that it did not change its behaviour. Conges-

tion control mechanisms that throttle the TCP connec-

tion will give preference to the burst of writes because it

simply provides more data, while the latency for a low-

bandwidth application such as ssh increases unfairly.

2.2 Cross-Circuit Interference

Tor multiplexes the data for a number of circuits over a

single TCP stream, and this ensures that the received data

will appear in the precise order in which the component

streams were multiplexed—a guarantee that goes beyond

what is strictly necessary. When packets are dropped

or reordered, the TCP stack will buffer available data

on input buffers until the missing in-order component is

available. We hypothesize that when active circuits are

multiplexed over a single TCP connection, Tor suffers an

unreasonable performance reduction when either packet

dropping or packet reordering occur. Cells may be avail-

able in-order for one particular circuit but are being de-

layed due to missing cells for another circuit. In-order

guarantees are only necessary for data sent within a sin-

gle circuit, but the network layer ensures that data is only

readable in the order it was dispatched. Packet loss or re-

ordering will cause the socket to indicate that no data is

available to read even if other circuits have their sequen-

tial cells available in buffers.

Figure 3 illustrates the classic head-of-line blocking

behaviour of Tor during a packet drop; cells for distinct

circuits are represented by shades and a missing packet

is represented with a cross. We see that the white, light

grey, and black circuits have had all of their data suc-

cessfully received, yet the kernel will not pass that data

to the Tor application until the dropped dark grey packet

is retransmitted and successfully received.

We verify our cross-circuit interference hypothesis in

two parts. In this section we show that packet drops on a
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Figure 3: TCP correlated streams. Shades correspond to cells for different circuits.

Experiment 1 Determining the effect of packet dropping

on circuit multiplexing.

1: A Tor network of six ORs on a single host was con-

figured to have a latency of 50 milliseconds and a

variable packet drop rate.

2: Eight OP built circuits that were fixed so that the sec-

ond and third ORs were the same for each client, but

the first hop was evenly distributed among the re-

maining ORs. Figure 4 illustrates this setup.

3: There were three runs of the experiment. The first

did not drop any packets. The second dropped 0.1%

of packets on the shared link, and the third dropped

0.1% of packets on the remaining links.

4: The ORs were initialized and then the clients were

run until circuits were established.

5: Each OP had a client connect, which would tunnel a

connection to a timestamp server through Tor. The

server sends a continuous stream of timestamps. The

volume of timestamps measures throughput, and the

difference in time measures latency.

6: Data was collected for one minute.

shared link degrade throughput much more severely than

drops over unshared links. Then in Section 4 we show

that this effect disappears with our proposed solution.

To begin, we performed Experiment 1 to investigate

the effect of packet dropping on circuit multiplexing.

The layout of circuits in the experiment, as shown in

Figure 4, is chosen so that there is one shared link that

carries data for all circuits, while the remaining links do

not.

In the two runs of our experiments that drop packets,

they are dropped according to a target drop rate, either on

the heavily shared connection or the remaining connec-

tions. Our packet dropping tool takes a packet, decides

if it is eligible to be dropped in this experiment, and if

so then it drops it with the appropriate probability. How-

ever, this model means the two runs that drop packets

will see different rates of packet dropping systemwide,

since we observe greater traffic on the remaining con-

nections. This is foremost because it spans two hops

along the circuit instead of one, and also because traf-

fic from multiple circuits can be amalgamated into one

packet for transmission along the shared connection. As

a result, a fixed drop rate affecting the remaining connec-
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Network Circuit Throughput Effective

Configuration Throughput Throughput Degradation Drop

(KB/s) (KB/s) Rate

No dropping 221 ± 6.6 36.9 ± 1.1 0 % 0 %

0.1 % (remaining) 208 ± 14 34.7 ± 2.3 6 % 0.08 %

0.1 % (shared) 184 ± 17 30.8 ± 2.8 17 % 0.03 %

Table 1: Throughput for different dropping configurations. Network throughput is the total data sent along all the

circuits.

Average Latency Effective

Configuration Latency Increase Drop Rate

No dropping 933 ± 260 ms 0 % 0 %

0.1 % (remaining) 983 ± 666 ms 5.4 % 0.08 %

0.1 % (shared) 1053 ± 409 ms 12.9 % 0.03 %

Table 2: Latency for different dropping configurations.



tions will result in more frequent packet drops than one

dropping only along the shared connection. This dispar-

ity is presented explicitly in our results as the effective

drop rate; i.e., the ratio of packets dropped to the total

number of packets we observed (including those ineligi-

ble to be dropped) in the experiment.

The results of Experiment 1 are shown in Tables 1

and 2. They show the results for three configurations:

when no packet dropping is done, when 0.1% of packets

are dropped on all connections except the heavily shared

one, and when 0.1% of packets are dropped only on the

shared connection. The degradation column refers to

the loss in performance as a result of introducing packet

drops. The average results for throughput and delay were

accumulated over half a dozen executions of the exper-

iment, and the mean intervals for the variates are com-

puted using Student’s T distribution to 95% confidence.

These results confirm our hypothesis. The throughput

degrades nearly threefold when packets are dropped on

the shared link instead of the remaining links. This is

despite a significantly lower overall drop rate. The be-

haviour of one TCP connection can adversely affect all

correlated circuits, even if those circuits are used to trans-

port less data.

Table 2 suggests that latency increases when packet

dropping occurs. Latency is measured by the time re-

quired for a single cell to travel alongside a congested

circuit, and we average a few dozen such probes. Again

we see that dropping on the shared link more adversely

affects the observed delay despite a reduced drop rate.

However, we note that the delay sees wide variance, and

the 95% confidence intervals are quite large.

2.3 Summary

Multiplexing circuits over a single connection is a poten-

tial source of unnecessary latency since it causes TCP’s

congestion control mechanism to operate unfairly to-

wards connections with smaller demands on throughput.

High-bandwidth streams that trigger congestion control

result in low-bandwidth streams having their congestion

window unfairly reduced. Packet dropping and reorder-

ing also cause available data for multiplexed circuits to

wait needlessly in socket buffers. These effects degrade

both latency and throughput, which we have shown in

experiments.

To estimate the magnitude of this effect in the real Tor

network, we note that 10% of Tor routers supply 87%

of the total network bandwidth [8]. A straightforward

calculation shows that links between top routers—while

only comprising 1% of the possible network links—

transport over 75% of the data. At the time of writing,

the number of OPs is estimated in the hundreds of thou-

sands and there are only about one thousand active ORs

[14]. Therefore, even while most users are idle, the most

popular 1% of links will be frequently multiplexing cir-

cuits.

Ideally, we would open a separate TCP connection for

every circuit, as this would be a more appropriate use of

TCP between ORs; packet drops on one circuit, for ex-

ample, would not hold up packets in other circuits. How-

ever, there is a problem with this naive approach. An

adversary observing the network could easily distinguish

packets for each TCP connection just by looking at the

port numbers, which are exposed in the TCP headers.

This would allow him to determine which packets were

part of which circuits, affording him greater opportunity

for traffic analysis. Our solution is to tunnel packets from

multiple TCP streams over DTLS, a UDP protocol that

provides for the confidentiality of the traffic it transports.

By tunnelling TCP over a secure protocol, we can protect

both the TCP payload and the TCP headers.

3 Proposed Transport Layer

This section proposes a TCP-over-DTLS tunnelling

transport layer for Tor. This tunnel transports TCP

packets between peers using DTLS—a secure datagram

(UDP-based) transport [9]. A user-level TCP stack run-

ning inside Tor generates and parses TCP packets that

are sent over DTLS between ORs. Our solution will use

a single unconnected UDP socket to communicate with

all other ORs at the network level. Internally, it uses a

separate user-level TCP connection for each circuit. This

decorrelates circuits from TCP streams, which we have

shown to be a source of unnecessary latency. The use of

DTLS also provides the necessary security and confiden-

tiality of the transported cells, including the TCP header.

This prevents an observer from learning per-circuit meta-

data such data how much data is being sent in each di-

rection for individual circuits. Additionally, it reduces

the number of sockets needed in kernel space, which

is known to be a problem that prevents some Windows

computers from volunteering as ORs. Figure 5 shows

the design of our proposed transport layer, including how

only a single circuit is affected by a dropped packet.

The interference that multiplexed circuits can have on

each other during congestion, dropping, and reordering

is a consequence of using a single TCP connection to

transport data between each pair of ORs. This proposal

uses a separate TCP connection for each circuit, ensur-

ing that congestion or drops in one circuit will not affect

other circuits.

3.1 A TCP-over-DTLS Tunnel

DTLS [9] is the datagram equivalent to the ubiquitous

TLS protocol [1] that secures much traffic on the Inter-
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net today, including https web traffic, and indeed Tor.

DTLS provides confidentiality and authenticity for In-

ternet datagrams, and provides other security properties

such as replay prevention. IPsec [6] would have been

another possible choice of protocol to use here; how-

ever, we chose DTLS for our application due to its ac-

ceptance as a standard, its ease of use without kernel or

superuser privileges, and its existing implementation in

the OpenSSL library (a library already in use by Tor).

The TLS and DTLS APIs in OpenSSL are also unified;

after setup, the same OpenSSL calls are used to send and

receive data over either TLS or DTLS. This made sup-

porting backwards compatibility easier: the Tor code will

send packets either over TCP (with TLS) or UDP (with

DTLS), as appropriate, with minimal changes.

Our new transport layer employs a user-level TCP

stack to generate TCP packets, which are encapsulated

inside a DTLS packet that is then sent by the system in

a UDP/IP datagram. The receiving system will remove

the UDP/IP header when receiving data from the socket,

decrypt the DTLS payload to obtain a TCP packet, and

translate it into a TCP/IP packet, which is then forwarded

to the user-level TCP stack that processes the packet. A

subsequent read from the user-level TCP stack will pro-

vide the packet data to our system.

In our system, the TCP sockets reside in user space,

and the UDP sockets reside in kernel space. The use

of TCP-over-DTLS affords us the great utility of TCP:

guaranteed in-order delivery and congestion control. The

user-level TCP stack provides the functionality of TCP,

and the kernel-level UDP stack is used simply to trans-

mit packets. The secured DTLS transport allows us to

protect the TCP header from snooping and forgery and

effect a reduced number of kernel-level sockets.

ORs require opening many sockets, and so our user-

level TCP stack must be able to handle many concur-

rent sockets, instead of relying on the operating sys-

tem’s TCP implementation that varies from system to

system. In particular, some discount versions of Win-

dows artificially limit the number of sockets the user

can open, and so we use Linux’s free, open-source,

and high-performance TCP implementation inside user

space. Even Windows users will be able to benefit from

an improved TCP implementation, and thus any user of

an operating system supported by Tor will be able to vol-

unteer their computer as an OR if they so choose.

UDP allows sockets to operate in an unconnected

state. Each time a datagram is to be sent over the Inter-

net, the destination for the packet is also provided. Only

one socket is needed to send data to every OR in the Tor

network. Similarly, when data is read from the socket,

the sender’s address is also provided alongside the data.

This allows a single socket to be used for reading from

all ORs; all connections and circuits will be multiplexed

over the same socket. When reading, the sender’s ad-

dress can be used to demultiplex the packet to determine

the appropriate connection for which it is bound. What

follows is that a single UDP socket can be used to com-

municate with as many ORs as necessary; the number of

kernel-level sockets is constant for arbitrarily many ORs

with which a connection may be established. This will

become especially important for scalability as the num-

ber of nodes in the Tor network grows over time. From

a configuration perspective, the only new requirement is

that the OR operator must ensure that a UDP port is ex-

ternally accessible; since they must already ensure this

for a TCP port we feel that this is a reasonable configu-

ration demand.

Figure 6(a) shows the packet format for TCP Tor, and

Figure 6(b) shows the packet format for our TCP-over-

DTLS Tor, which has expanded the encrypted payload to

include the TCP/IP headers generated by the user-level

TCP stack. The remainder of this section will discuss

how we designed, implemented, and integrated these

changes into Tor.

3.2 Backwards Compatibility

Our goal is to improve Tor to allow TCP communica-

tion using UDP in the transport layer. While the origi-

nal ORs transported cells between themselves, our pro-

posal is to transport, using UDP, both TCP headers and

cells between ORs. The ORs will provide the TCP/IP

packets to a TCP stack that will generate both the ap-

propriate stream of cells to the Tor application, as well
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as TCP/IP packets containing TCP acknowledgements to

be returned.

The integration of this transport layer into Tor has two

main objectives. The first is that of interoperability; it is

essential that the improved Tor is backwards compatible

with the TCP version of Tor so as to be easily accepted

into the existing codebase. Recall that Tor has thousands

of ORs, a client population estimated in the hundreds of

thousands, and has not experienced any downtime since

it launched in 2003. It is cumbersome to arrange a syn-

chronized update of an unknown number of anonymous

Tor users. A subset of nodes that upgrade and can take

advantage of TCP-over-DTLS can provide evidence of

the transport’s improvement for the user experience—

this incremental upgrade is our preferred path to accep-

tance. Our second objective is to minimize the changes

required to the Tor codebase. We must add UDP con-

nections into the existing datapath by reusing as much

existing code as possible. This permits future developers

to continue to improve Tor’s datapath without having to

consider two classes of communication. Moreover, it en-

courages the changes to quickly be incorporated into the

main branch of the source code. While it will come with

a performance cost for doing unnecessary operations, we

perform timing analyses below to ensure that the result-

ing datapath latency remains negligible.

Interoperability between existing ORs and those using

our improved transport is achieved by fully maintaining

the original TCP transport in Tor—improved ORs con-

tinue to advertise a TCP OR port and multiplexed TCP

connections can continue to be made. In addition, im-

proved nodes will also advertise a UDP port for making

TCP-over-DTLS connections. Older nodes will ignore

this superfluous value, while newer nodes will always

choose to make a TCP-over-DTLS connection whenever

such a port is advertised. Thus, two UDP nodes will au-

tomatically communicate using UDP without disrupting

the existing nodes; their use of TCP-over-DTLS is in-

consequential to the other nodes. As more nodes support

TCP-over-DTLS, more users will obtain its benefits, but

we do not require a synchronized update to support our

improvements.

Clients of Tor are not required to upgrade their soft-

ware to obtain the benefits of UDP transport. If two

nodes on their circuit use TCP-over-DTLS to commu-

nicate then this will happen transparently to the user. In

fact, it is important that the user continue to choose their

circuit randomly among the ORs: intentionally choosing

circuits consisting of UDP nodes when there are only

a few such nodes decreases the privacy afforded to the

client by rendering their circuit choices predictable.

3.3 User-level TCP Stack

If we simply replaced the TCP transport layer in Tor

with a UDP transport layer, our inter-OR communica-

tion would then lack the critical features of TCP: guaran-

teed in-order transmission of streams, and the most well-

studied congestion control mechanism ever devised. We

wish to remove some of the unnecessary guarantees of

TCP for the sake of latency; i.e., we do not need cells

from separate circuits over the same connection to arrive

in the order they were dispatched. However, we must

still be able to reconstruct the streams of each individ-

ual circuit at both ends of the connection. We use a TCP

implementation in user space (instead of inside the oper-

ating system) to accommodate us; a user-level TCP stack

provides the implementation of the TCP protocols [4] as

part of our program. User-level socket file descriptors

and their associated data structures and buffers are ac-

cessible only in user space and so are visible and relevant

only to Tor. We use the UDP transport layer and DTLS

to transport TCP packets between the UDP peers. Only

part of the TCP packet is transmitted; the details will be

discussed in section 3.4, but it serves our purposes now

to conceptualize the two nodes as transporting full TCP

packets as the UDP datagram’s payload. Upon receiving

a UDP datagram, the kernel will remove the UDP header

and provide Tor with the enclosed DTLS packet; Tor will

decrypt the DTLS payload and present the result (a TCP

packet) to its user-level TCP stack. Similarly, when the

user-level TCP stack presents a packet for transmission,

the node will encrypt it with DTLS and forward the re-

sulting packet to the kernel which then sends it to the



intended destination over UDP. The stack also performs

retransmission and acknowledgement of TCP data that

are integral to TCP’s reliability; these are protected with

DTLS and forwarded over UDP in the same manner.

A user-level TCP stack provides an implementation of

the suite of socket function calls, such as socket(), send(),

and recv(). These reimplementations exist in harmony

with the proper set of operating system commands, al-

lowing both a user-level and kernel-level network layer.

Thus, data structures and file descriptors created by calls

to the user-level stack are visible and relevant only to the

parent process; the operating system manages its sock-

ets separately. The user-level stack responds to socket

calls by generating packets internally for dispatching as

dictated by TCP.

It may seem cumbersome to include an entire TCP im-

plementation as a core component of Tor. In particular,

patching the kernel’s implementation of TCP to support

our features would take significantly less effort. How-

ever, Tor relies on volunteers to route traffic; complicated

installation procedures are an immediate roadblock to-

wards the ubiquitous use of Tor. The diverse operating

systems Tor aims to support and the diverse skill level of

its users prevent its installation from requiring external

procedures, or even superuser privileges.

Daytona [11] is a user-level TCP stack that we chose

for our purposes. It was created by researchers study-

ing network analysis, and consists of the implementation

of Linux’s TCP stack and the reimplementations of user-

level socket functions. It uses libpcap to capture pack-

ets straight from the Ethernet device and a raw socket to

write generated packets, including headers, onto the net-

work. Daytona was designed to operate over actual net-

works while still giving user-level access to the network

implementation. In particular, it allowed the researchers

to tune the implementation while performing intrusive

measurements. A caveat—there are licensing issues for

Daytona’s use in Tor. As a result, the deployment of this

transport layer into the real Tor network may use a dif-

ferent user-level TCP stack. Our design uses Daytona

as a replaceable component and its selection as a user-

level TCP stack was out of availability for our proof-of-

concept.

3.4 UTCP: Our Tor-Daytona Interface

Our requirements for a user-level TCP stack are to cre-

ate properly formatted packets, including TCP retrans-

missions, and to sort incoming TCP/IP packets into data

streams: a black box that converts between streams and

packets. For our purpose, all notions of routing, Eth-

ernet devices, and interactions with a live network are

unnecessary. To access the receiving and transmitting of

packets, we commandeer the rx() (receive) and tx()

(transmit) methods of Daytona to instead interface di-

rectly with reading and writing to connections in Tor.

UTCP is an abstraction layer for the Daytona TCP

stack used as an interface for the stack by Tor. Each

UDP connection between ORs has a UTCP-connection

object that maintains information needed by our stack,

such as the set of circuits between those peers and the

socket that listens for new connections. Each circuit has

a UTCP-circuit object for similar purposes, such as the

local and remote port numbers that we have assigned for

this connection.

As mentioned earlier, only part of the TCP header is

transmitted using Tor—we call this header the TORTP

header; we do this simply to optimize network traffic.

The source and destination addresses and ports are re-

placed with a numerical identifier that uniquely identifies

the circuit for the connection. Since a UDP/IP header

is transmitted over the actual network, Tor is capable of

performing a connection lookup based on the address of

the packet sender. With the appropriate connection, and

a circuit identifier, the interface to Daytona is capable

of translating the TORTP header into the corresponding

TCP header.

When the UTCP interface receives a new packet, it

uses local data and the TORTP headers to create the cor-

responding TCP header. The resulting packet is then in-

jected into the TCP stack. When Daytona’s TCP stack

emits a new packet, a generic tx() method is invoked,

passing only the packet and its length. We look up

the corresponding UTCP circuit using the addresses and

ports of the emitted TCP header, and translate the TCP

header to our TORTP header and copy the TCP pay-

load. This prepared TORTP packet is then sent to Tor,

along with a reference to the appropriate circuit, and Tor

sends the packet to the destination OR over the appropri-

ate DTLS connection.

3.5 Congestion Control

The congestion control properties of the new scheme

will inherit directly from those of TCP, since TCP is the

protocol being used internally. While it is considered

an abuse of TCP’s congestion control to open multiple

streams between two peers simply to send more data,

in this case we are legitimately opening one stream for

each circuit carrying independent data. When packets

are dropped, causing congestion control to activate, it

will only apply to the single stream whose packet was

dropped. Congestion control variables are not shared

between circuits; we discuss the possibility of using

the message-oriented Stream Control Transport Protocol

(SCTP), which shares congestion control information, in

Section 5.2.

If a packet is dropped between two ORs communicat-



ing with multiple streams of varying bandwidth, then the

drop will be randomly distributed over all circuits with

a probability proportional to their volume of traffic over

the link. High-bandwidth streams will see their packets

dropped more often and so will back off appropriately.

Multiple streams will back off in turn until the conges-

tion is resolved. Streams such as ssh connections that

send data interactively will always be allowed to have at

least one packet in flight regardless of the congestion on

other circuits.

Another interesting benefit of this design is that it

gives Tor direct access to TCP parameters at runtime.

The lack of sophistication in Tor’s own congestion con-

trol mechanism is partially attributable to the lack of di-

rect access to networking parameters at the kernel level.

With the TCP stack in user space Tor’s congestion con-

trol can be further tuned and optimized. In particular,

end-to-end congestion control could be gained by ex-

tending our work to have each node propagate its TCP

rate backwards along the circuit: each node’s rate will

be the minimum of TCP’s desired rate and the value re-

ported by the subsequent node. This will address conges-

tion imbalance issues where high-bandwidth connections

send traffic faster than it can be dispatched at the next

node, resulting in data being buffered upon arrival. When

TCP rates are propagated backwards, then the bandwidth

between two ORs will be prioritized for data whose next

hop has the ability to immediately send the data. Cur-

rently there is no consideration for available bandwidth

further along the circuit when selecting data to send.

4 Experimental Results

In this section we perform experiments to compare the

existing Tor transport layer with an implementation of

our proposed TCP-over-DTLS transport. We begin by

timing the new sections of code to ensure that we have

not significantly increased the computational latency.

Then we perform experiments on a local Tor network

of routers, determining that our transport has indeed ad-

dressed the cross-circuit interference issues previously

discussed.

4.1 Timing Analysis

Our UDP implementation expands the datapath of Tor

by adding new methods for managing user-level TCP

streams and UDP connections. We profile our modified

Tor and perform static timing analysis to ensure that our

new methods do not degrade the datapath unnecessarily.

Experiment 2 was performed to profile our new version

of Tor.

The eightieth percentile of measurements for Experi-

ment 2 are given in Table 3. Our results indicate that no

Experiment 2 Timing analysis of our modified TCP-

over-DTLS datapath.

1: TCP-over-DTLS Tor was modified to time the dura-

tion of the aspects of the datapath:

• injection of a new packet (DTLS decryption,

preprocessing, injecting into TCP stack, possi-

bly sending an acknowledgment),

• emission of a new packet (header translation,

DTLS encryption, sending packet),

• the TCP timer function (increments counters

and checks for work such as retransmissions

and sending delayed acknowledgements), and

• the entire datapath from reading a packet on a

UDP socket, demultiplexing the result, inject-

ing the packet, reading the stream, processing

the cell, writing the result, and transmitting the

generated packet.

2: The local Tor network was configured to use 50 ms

of latency between connections.

3: A client connected through Tor to request a data

stream.

4: Data travelled through the network for several min-

utes.

new datapath component results in a significant source of

computational latency.

We have increased the datapath latency to an expected

value of 250 microseconds per OR, or 1.5 milliseconds

for a round trip along a circuit of length three. This is

still an order of magnitude briefer than the round-trip

times between ORs on a circuit (assuming geopolitically

diverse circuit selection). Assuming each packet is 512

bytes (the size of a cell—a conservative estimate as our

experiments have packets that carry full dataframes), we

have an upper bound on throughput of 4000 cells per sec-

ond or 2 MB/s. While this is a reasonable speed that will

likely not form a bottleneck, Tor ORs that are willing

to devote more than 2 MB/s of bandwidth may require

better hardware than the Thinkpad R60 used in our ex-

periments.

4.2 Basic Throughput

We perform Experiment 3 to compare the basic through-

put and latency of our modification to Tor, the results of

which are shown in Table 4. We can see that the UDP

version of Tor has noticeably lower throughput. Origi-

nally it was much lower, and increasing the throughput

up to this value took TCP tuning and debugging the user-

level TCP stack. In particular, errors were uncovered in

Daytona’s congestion control implementation, and it is



Datapath Component Duration

Injecting Packet 100 microseconds

Transmitting Packet 100 microseconds

TCP Timer 85 microseconds

Datapath 250 microseconds

Table 3: Time durations for new datapath components. The results provided are the 80th percentile measurement.

Network Circuit Base

Configuration Throughput Delay Delay

TCP Tor 176 ± 24.9 KB/s 1026 ± 418 ms 281 ± 12 ms

TCP-over-DTLS Tor 111 ± 10.4 KB/s 273 ± 31 ms 260 ± 1 ms

Table 4: Throughput and delay for different reordering configurations. The configuration column shows which row

correspond to which version of Tor we used for our ORs in the experiment. Network throughput is the average data

transfer rate we achieved in our experiment. Circuit delay is the latency of the circuit while the large bulk data transfer

was occurring, whereas the base delay is the latency of the circuit taken in the absence of any other traffic.

suspected that more bugs remain to account for this dis-

parity. While there may be slight degradation in perfor-

mance when executing TCP operations in user space in-

stead of kernel space, both implementations of TCP are

based on the same Linux TCP implementation operat-

ing over in the same network conditions, so we would

expect comparable throughputs as a result. With more

effort to resolve outstanding bugs, or the integration of

a user-level TCP stack better optimized for Tor’s needs,

we expect the disparity in throughputs will vanish. We

discuss this further in the future work section.

More important is that the circuit delay for a sec-

ond stream over the same circuit indicates that our UDP

version of Tor vastly improves latency in the presence

of a high-bandwidth circuit. When one stream triggers

the congestion control mechanism, it does not cause the

low-bandwidth client to suffer great latency as a con-

sequence. In fact, the latency observed for TCP-over-

DTLS is largely attributable to the base latency imposed

on connections by our experimental setup. TCP Tor, in

contrast, shows a three-and-a-half fold increase in la-

tency when the circuit that it multiplexes with the bulk

stream is burdened with traffic.

The disparity in latency for the TCP version means

that information is leaked: the link between the last two

nodes is witnessing bulk transfer. This can be used as

a reconnaissance technique; an entry node, witnessing a

bulk transfer from an client and knowing its next hop,

can probe potential exit nodes with small data requests

to learn congestion information. Tor rotates its circuits

every ten minutes. Suppose the entry node notices a bulk

transfer when it begins, and probes various ORs to deter-

mine the set of possible third ORs. It could further reduce

this set by re-probing after nine minutes, after which time

most of the confounding circuits would have rotated to

new links.

We conclude that our TCP-over-DTLS, while cur-

rently suffering lower throughput, has successfully ad-

dressed the latency introduced by the improper use of

the congestion control mechanism. We expect that once

perfected, the user-level TCP stack will have nearly the

same throughput as the equivalent TCP implementation

in the kernel. The response latency for circuits in our

improved Tor is nearly independent of throughput on ex-

isting Tor circuits travelling over the same connections;

this improves Tor’s usability and decreases the ability for

one circuit to leak information about another circuit us-

ing the same connection through interference.

4.3 Multiplexed Circuits with Packet

Dropping

Packet dropping occurs when a packet is lost while being

routed through the Internet. Packet dropping, along with

packet reordering, are consequences of the implementa-

tion of packet switching networks and are the prime rea-

son for the invention of the TCP protocol. In this section,

we perform an experiment to contrast the effect of packet

dropping on the original version of Tor and our improved

version.

We reperformed Experiment 1—using our TCP-over-

DTLS implementation of Tor instead of the standard

implementation—to investigate the effect of packet drop-

ping. The results are presented in Tables 5 and 6. We

reproduce our results from Tables 1 and 2 to contrast the

old (TCP) and new (TCP-over-DTLS) transports.

We find that throughput is much superior for the TCP-

over-DTLS version of Tor. This is likely because the



Network Circuit Throughput Effective

Version Configuration Throughput Throughput Degradation Drop

(KB/s) (KB/s) Rate

TCP- No dropping 284 ± 35 47.3 ± 5.8 0 % 0 %

over- 0.1 % (remain.) 261 ± 42 43.5 ± 7.0 8 % 0.08 %

DTLS 0.1 % (shared) 270 ± 34 45.2 ± 5.6 4 % 0.03 %

No dropping 221 ± 6.6 36.9 ± 1.1 0 % 0 %

TCP 0.1 % (remain.) 208 ± 14 34.7 ± 2.3 6 % 0.08 %

0.1 % (shared) 184 ± 17 30.8 ± 2.8 17 % 0.03 %

Table 5: Throughput for different dropping configurations.

Average Latency Effective

Version Configuration Latency Degradation Drop Rate

TCP- No dropping 428 ± 221 ms 0 % 0 %

over- 0.1 % (remaining) 510 ± 377 ms 20 % 0.08 %

DTLS 0.1 % (shared) 461 ± 356 ms 7 % 0.03 %

No dropping 933 ± 260 ms 0 % 0 %

TCP 0.1 % (remaining) 983 ± 666 ms 5.4 % 0.08 %

0.1 % (shared) 1053 ± 409 ms 12.9 % 0.03 %

Table 6: Latency for different dropping configurations.

TCP congestion control mechanism has less impact on

throttling when each TCP stream is separated. One

stream may back off, but the others will continue send-

ing, which results in a greater throughput over the bot-

tleneck connection. This is reasonable behaviour since

TCP was designed for separate streams to function over

the same route. If congestion is a serious problem then

multiple streams will be forced to back off and find the

appropriate congestion window. Importantly, the streams

that send a small amount of data are much less likely to

need to back off, so their small traffic will not have to

compete unfairly for room inside a small congestion win-

dow intended to throttle a noisy connection. The benefits

of this are clearly visible in the latency as well: cells

can travel through the network considerably faster in the

TCP-over-DTLS version of Tor. Despite the large confi-

dence intervals for latency mentioned earlier, we see now

that TCP-over-DTLS consistently has significantly lower

latency than the original TCP Tor.

The TCP-over-DTLS version has its observed

throughput and latency affected proportionally to packet

drop rate. It did not matter if the drop was happen-

ing on the shared link or the remaining link, since the

shared link is not a single TCP connection that multi-

plexes all traffic. Missing cells for different circuits no

longer cause unnecessary waiting, and so the only effect

on latency and throughput is the effect of actually drop-

ping cells along circuits.

5 Alternative Approaches

There are other means to improve Tor’s observed latency

than the one presented in this paper. For comparison, in

this section we outline two significant ones: UDP-OR,

and SCTP-over-DTLS.

5.1 UDP-OR

Another similar transport mechanism for Tor has been

proposed by Viecco [15] that encapsulates TCP pack-

ets from the OP and sends them over UDP until they

reach the exit node. Reliability guarantees and conges-

tion control are handled by the TCP stacks on the client

and the exit nodes, and the middle nodes only forward

traffic. A key design difference between UDP-OR and

our proposal is that ours intended on providing back-

wards compatibility with the existing Tor network while

Viecco’s proposal requires a synchronized update of the

Tor software for all users. This update may be cumber-

some given that Tor has thousands of routers and an un-

known number of clients estimated in the hundreds of

thousands.

This strategy proposes benefits in computational com-

plexity and network behaviour. Computationally, the

middle nodes must no longer perform unnecessary op-

erations: packet injection, stream read, stream write,

packet generation, and packet emission. It also removes

the responsibility of the middle node to handle retrans-



Experiment 3 Basic throughput and delay for TCP and

TCP-over-DTLS versions of Tor.
1: To compare TCP and TCP-over-DTLS we run the

experiment twice: one where all ORs use the original

TCP version of time, and one where they all use our

modified TCP-over-DTLS version of Tor.

2: A local Tor network running six routers on a local

host was configured to have a latency of 50 millisec-

onds.

3: Two OPs are configured to connect to our local Tor

network. They use distinct circuits, but each OR

along both circuit is the same. The latency-OP will

be used to measure the circuit’s latency by send-

ing periodic timestamp probes over Tor to a timing

server. The throughput-OP will be used to measure

the circuit’s throughput by requesting a large bulk

transfer and recording the rate at which it arrives.

4: We start the latency-OP’s timestamp probes and

measure the latency of the circuit. Since we have

not begun the throughput-OP, we record the time as

the base latency of the circuit.

5: We begin the throughput-OP’s bulk transfer and

measure throughput of the circuit. We continue to

measure latency using the latency-OP in the pres-

ence of other traffic. The latency results that are col-

lected are recorded separately from those of step 4.

6: Data was collected for over a minute, and each con-

figuration was run a half dozen times to obtain con-

fidence intervals.

missions, which means a reduction in its memory re-

quirements. The initial endpoint of communication will

be responsible for retransmitting the message if neces-

sary. We have shown that computational latency is in-

significant in Tor, so this is simply an incidental benefit.

The tangible benefit of UDP-OR is to improve the net-

work by allowing the ORs to function more exactly like

routers. When cells arrive out of order at the middle

node, they will be forwarded regardless, instead of wait-

ing in input buffers until the missing cell arrives. More-

over, by having the sender’s TCP stack view both hops

as a single network, we alleviate problems introduced by

disparity in network performance. Currently, congestion

control mechanisms are applied along each hop, mean-

ing that an OR in the middle of two connections with

different performance metrics will need to buffer data to

send over the slower connection. Tor provides its own

congestion control mechanism, but it does not have the

sophistication of TCP’s congestion control.

We require experimentation to determine if this pro-

posal is actually beneficial. While it is clear that mem-

ory requirements for middle nodes are reduced [15],

the endpoints will see increased delay for acknowledge-

ments. We expect an equilibrium for total system mem-

ory requirements since data will be buffered for a longer

time. Worse, the approach shifts memory requirements

from being evenly distributed to occurring only on exit

nodes—and these nodes are already burdened with extra

responsibilities. Since a significant fraction of Tor nodes

volunteer only to forward traffic, it is reasonable to use

their memory to ease the burden of exit nodes.

Circuits with long delays will also suffer reduced

throughput, and so using congestion control on as short a

path as possible will optimize performance. If a packet is

dropped along the circuit, the endpoint must now gener-

ate the retransmission message, possibly duplicating pre-

vious routing efforts and wasting valuable volunteered

bandwidth. It may be more efficient to have nodes along

a circuit return their CWND for the next hop, and have

each node use the minimum of their CWND and the next

hop’s CWND. Each node then optimizes their sending

while throttling their receiving.

5.1.1 Low-cost Privacy Attack

UDP-OR may introduce an attack that permits a hostile

entry node to determine the final node in a circuit. Previ-

ously each OR could only compute TCP metrics for ORs

with whom they were directly communicating. Viecco’s

system would have the sender’s TCP stack communicate

indirectly with an anonymous OR. Connection attributes,

such as congestion and delay, are now known for the

longer connection between the first and last nodes in a

circuit. The first node can determine the RTT for traffic

to the final node. It can also reliably compute the RTT

for its connection to the middle node. The difference in

latency reflects the RTT between the second node and

the anonymous final node. An adversary can use a sim-

ple technique to estimate the RTT between the second

node and every other UDP Tor node in the network [3],

possibly allowing them to eliminate many ORs from the

final node’s anonymity set. If it can reduce the set of

possible final hops, other reconnaissance techniques can

be applied, such as selectively flooding each OR outside

of Tor and attempting to observe an increased latency in-

side Tor [10]. Other TCP metrics may be amalgamated

to further aid this attack: congestion window, slow-start

threshold, occurrence of congestion over time, standard

deviation in round-trip times, etc. The feasibility of this

attack should be examined before allowing nodes who do

not already know each other’s identities to share a TCP

conversation.

5.2 Stream Control Transmission Protocol

The Stream Control Transmission Protocol (SCTP) [13]

is a message-based transport protocol. It provides sim-



ilar features to TCP: connection-oriented reliable deliv-

ery with congestion control. However, it adds the ability

to automatically delimit messages instead of requiring

the receiving application to manage its own delimiters.

The interface is based on sending and receiving mes-

sages rather than bytes, which is appropriate for Tor’s

cell-based transport.

More importantly, SCTP also adds a feature well-

suited to our purposes—multiple streams can be trans-

ported over the same connection. SCTP allows multi-

ple independent ordered streams to be sent over the same

socket; we can use this feature to assign each circuit a

different stream. Cells from each circuit will arrive in

the order they were sent, but the order cells arrive across

all circuits may vary from they dispatch order. This is

exactly the behaviour we want for cells from different

circuits being sent between the same pair of ORs.

While SCTP is not as widely deployed as TCP, the

concept of using a user-level SCTP implementation [5]

inside Tor remains feasible. This suggests a SCTP-over-

DTLS transport similar in design to our TCP-over-DTLS

design. This means that the extra benefits of TCP-over-

DTLS will also extend to SCTP-over-DTLS: backwards

compatibility with the existing Tor network, a constant

number of kernel-level sockets required, and a secured

transport header.

What is most interesting about the potential of SCTP-

over-DTLS is SCTP’s congestion control mechanism.

Instead of each TCP stream storing its own congestion

control metrics, SCTP will share metrics and computa-

tions across all streams. An important question in the

development of such a scheme is whether SCTP will act

fairly towards streams that send little data when other

streams invoke congestion control, and whether the shar-

ing of congestion control metrics results in a privacy-

degrading attack by leaking information.

6 Future Work

6.1 Live Experiments

The most pressing future work is to perform these ex-

periments on live networks of geographically distributed

machines running TCP-over-DTLS Tor, using comput-

ers from the PlanetLab network, or indeed on the live

Tor network. Once running, we could measure latency

and throughput as we have already in our experiments,

comparing against results for regular Tor. Moreover, we

can also compare other approaches, such as SCTP-over-

DTLS and UDP-OR, using the same experiments. Note

that UDP-OR could of course not be tested on the live Tor

network, but it could be in a PlanetLab setup. A key met-

ric will be the distribution of throughput and latency for

high- and low-volume circuits before and after our im-

provements, and an analysis of the cause of the change.

Additionally, once most ORs use UDP, we can determine

if the reduced demand on open sockets solves the prob-

lem of socket proliferation on some operating systems.

6.2 TCP Stack Memory Management

Tor requires thousands of sockets to buffer fixed-size

cells of data, but data is only buffered when it arrives

out-of-order or has not been acknowledged. We envision

dynamic memory management such as a shared cell pool

to handle memory in Tor. Instead of repeatedly copying

data cells from various buffers, each cell that enters Tor

can be given a unique block of memory from the cell pool

until it is no longer needed. A state indicates where this

cell currently exists: input TCP buffer, input Tor buffer,

in processing, output Tor buffer, output TCP buffer. This

ensures that buffers are not allocated to store empty data,

which reduces the overall memory requirements. Each

cell also keeps track of its socket number, and its posi-

tion in the linked list of cells for that socket. While each

socket must still manage data such as its state and metrics

for congestion control, this is insignificant as compared

to the current memory requirements. This permits an ar-

bitrary number of sockets, for all operating systems, and

helps Tor’s scalability if the number of ORs increases by

orders of magnitude.

This approach results in the memory requirements of

Tor being a function of the number of cells it must man-

age at any time, independent of the number of open sock-

ets. Since the memory requirements are inextricably tied

to the throughput Tor offers, the user can parameterize

memory requirements in Tor’s configuration just as they

parameterize throughput. A client willing to denote more

throughput than its associated memory requirements will

have its contribution throttled as a result. If network

conditions result in a surge of memory required for Tor,

then it can simply stop reading from the UDP multiplex-

ing socket. The TCP stacks that sent this unread data

will assume there exists network congestion and conse-

quently throttle their sending—precisely the behaviour

we want—while minimizing leaked information about

the size of our cell pool.

7 Summary

Anonymous web browsing is an important step in the de-

velopment of the Internet, particularly as it grows ever

more inextricable from daily life. Tor is a privacy-

enhancing technology that provides Internet anonymity

using volunteers to relay traffic, and uses multiple relays

in series to ensure that no entity (other than the client) in

the system is aware of both the source and destination of

messages.



Relaying messages increases latency since traffic must

travel a longer distance before it is delivered. However,

the observed latency of Tor is much larger than just this

effect would suggest. To improve the usability of Tor,

we examined where this latency occurs, and found that it

happens when data sat idly in buffers due to congestion

control. Since multiple Tor circuits are multiplexed over

a single TCP connection between routers, we observed

cross-circuit interference due to the nature of TCP’s in-

order, reliable delivery and its congestion control mech-

anisms.

Our solution was the design and implementation of

a TCP-over-DTLS transport between ORs. Each cir-

cuit was given a unique TCP connection, but the TCP

packets themselves were sent over the DTLS protocol,

which provides confidentiality and security to the TCP

header. The TCP implementation is provided in user

space, where it acts as a black box that translates between

data streams and TCP/IP packets. We performed exper-

iments on our implemented version using a local exper-

imentation network and showed that we were successful

in removing the observed cross-circuit interference and

decreasing the observed latency.
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