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ABSTRACT
Tor is a popular anonymity-preserving network, consisting
of routers run by volunteers all around the world. It pro-
tects Internet users’ privacy by relaying their network traffic
through a series of routers, thus concealing the linkage be-
tween the sender and the recipient. Despite the advantage of
Tor’s anonymizing capabilities, it also brings extra latency,
which discourages more users from joining the network.

One of the factors that causes the latency lies in Tor’s cir-
cuit scheduling algorithm, which allows busy circuits (those
with continuous traffic) to crowd out bursty circuits (those
with short bursts of traffic). In this work, we propose and
implement a more advanced scheduling algorithm which treats
circuits differently, based on their recent activity. In this
way, bursty circuits such as those used for web browsing can
gain higher priority over busy ones such as used for bulk
transfer; the performance for most activities over Tor is im-
proved, while minimal overhead is incurred. Our algorithm
has been incorporated into the latest build of Tor.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Data communications; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design; C.4 [Com-
puter Systems Organization]: Performance of Systems;
K.4.1 [Computers and Society]: Public Policy Issues—
Privacy

General Terms
Measurement, Performance, Security

Keywords
Tor, latency, onion routing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

1. INTRODUCTION
Tor [3] is a distributed anonymizing network that provides

privacy for its users. The network is formed by volunteers
all around the world running Onion Routers (ORs). The
ORs publish their related information, such as bandwidth
and exit policies, to a set of centralized servers called direc-
tory authorities. These directory authorities will negotiate
with each other and reach a consensus about the ORs. An
end user runs an Onion Proxy (OP) locally to tunnel appli-
cation requests through Tor; the OP downloads the consen-
sus from the directory authorities, randomly picks a set of
ORs, choosing them weighted by their reported bandwidths,
and builds circuits through them. Then application traffic
is relayed through the circuit, using layered encryption. In
this way, a single OR only sees its previous OR/OP and
next OR/OP, but not the actual sender-recipient relation-
ship, and the privacy of the user at the transport level is
preserved.

The anonymity provided by Tor relies on the size of the
anonymity set. Currently, there are around 1500 ORs [1],
and an estimated quarter million Tor users. Tor’s rapid
expansion period ended by the end of 2007 (in terms of the
number of ORs) [10]. After that, Tor entered a relatively
stable stage: the number of ORs joining the Tor network
roughly equaled the number leaving it. One of the obstacles
for Tor’s further expansion is its performance issues.

There are many causes for Tor’s performance issues. Din-
gledine and Murdoch [4] identified several main reasons that
Tor is slow. One of the causes is that bursty circuits do not
co-exist with busy circuits very well. When multiple cir-
cuits are sharing a single connection between two ORs, busy
circuits such as those used for bulk transfer will greatly de-
grade the performance of the bursty ones, such as those used
for web browsing. Although this effect is inevitable due to
the limited bandwidth resources, we want to allocate the re-
sources more efficiently; that is, to give higher priority to the
circuits with low throughput or short bursts of traffic, and
make them faster. This is reasonable from the application
point of view as well: circuits for web browsing or instant
messaging are usually sensitive to delays, while those for
bulk transfer are usually not.

We see this as a general observation for anonymity net-
work design: different data streams attain unequal benefit
from properties of the network such as latency and through-
put. Although directly observing the data streams is gen-
erally not possible in such networks, any inferences that
can nonetheless be made about their utility functions can
yield improved efficiencies. It is of course important to



make these inferences only from already-exposed informa-
tion; re-engineering an anonymity network to leak more in-
formation about its contents can easily lead to increased
exposure, while merely optimizing behaviour based on in-
formation already in hand provides increased, although not
perfect, safety.

Our approach is to calculate the exponentially weighted
moving average (EWMA) for the number of cells sent on
each circuit. When selecting the circuit to process, we al-
ways pick one with the lowest EWMA value, and flush cells
from that circuit. Newly created circuits and bursty cir-
cuits will usually have a low EWMA value, and so they will
be prioritized. Making the observation that circuits under
construction and bursty interactive circuits gain the most
from improved latency allowed us to effect a noticeable im-
provement for those circuits that would see the most benefit
from it, while making only a small change to Tor’s existing
behaviour.

In Section 2, we introduce the incentives and rationality
of our proposal, briefly demonstrate the mechanism of Tor
circuits, and propose our improvement. In Section 3, we
show the results of some experiments under different sce-
narios, with analysis of the results and the overhead. Sec-
tion 4 examines the effect of different parameter values on
the performance of our system, and Section 5 explores the
performance improvements on Tor’s hidden services. Sec-
tion 6 relates the compatibility of our algorithm with the
existing Tor network. Section 7 provides some related work
on improving Tor’s performance. We discuss possible future
work in Section 8, and conclude in Section 9.

2. PRIORITIZING INTERACTIVE CIRCUITS
In this section, we propose our improvement on Tor’s cir-

cuit scheduling algorithm. First, we state the incentives for
our proposal; next, we describe the process by which Tor
ORs select which data is to be transmitted. Finally, we
describe our improvement over the existing system.

2.1 Incentives
Most users of Tor experience its performance issues: it

incurs much higher latency than direct connections. Al-
though the multi-hop architecture inevitably brings extra
latency, the experienced latency is higher than this effect
can explain.

One factor for Tor’s bad performance is its limited capac-
ity: the ORs are run by volunteers, usually on consumer
computers, with limited bandwidth. Within this limited
capacity, there are abuse issues observed in the Tor net-
work. According to McCoy et al. [12], a small number of
BitTorrent connections consume a very high proportion of
Tor bandwidth. These connections make Tor unusable for
many potential users.

Tor provides anonymity by mixing a specific user into a
crowd of users; therefore, the degree of anonymity Tor pro-
vides depends on the number of users. Higher latency will
discourage more users from joining the network. Hence, the
performance issues do not only affect user experience, but
also degrade Tor’s security properties.

The uses of Tor can be divided into interactive streams
and non-interactive streams. Interactive streams include
web browsing, instant messaging, SSH, and telnet, while
non-interactive streams include bulk file transfer such as
FTP and BitTorrent. Interactive streams are usually delay-

sensitive: users click on a link to a webpage and wait, ex-
pecting it to appear on the screen in seconds, while non-
interactive streams are not: BitTorrent users expect the file
download to be completed in hours or even days; they can
tolerate higher delays. We aim to improve Tor’s performance
by making ORs process interactive streams first. This will
give interactive users (the majority of Tor users) a better ex-
perience, and will make little difference for non-interactive
users.

We note that in choosing to prioritize web browsing traffic
over BitTorrent, we are not making a policy or value judge-
ment; rather, we are observing that it is the web brows-
ing traffic that would gain the most from improved latency,
while the utility of decreasing BitTorrent latency would be
much smaller.

2.2 How Tor’s Circuits Work
As described in Section 1, a client runs an OP locally. The

OP randomly selects several ORs to form a path, then builds
a Tor circuit through this path. Each circuit is used by only
one client (OP). Between each pair of ORs on the path, a Tor
connection is established. If multiple circuits use the same
two ORs in sequence, they will share a single connection
between the two ORs. Based on the current number of users
and ORs, and the ORs’ capacities, we can infer that usually
connections will be shared by multiple circuits, especially
for the connections between high-bandwidth ORs. That is,
each OR will have simultaneous connections to a number of
other ORs (but only one connection to any given OR), and
each connection will transport data for a number of circuits.

All Tor traffic is relayed in fixed-size (512-byte) cells. A
cell consists of a header field and a payload. The header
contains metadata about the cell, such as the circuit iden-
tifier. When a cell arrives at an OR, the OR decrypts the
cell, extracts the information necessary from the header, and
then pushes the cell into the output queue for its circuit (the
circuit queue). The time cost of this process is negligible [18]
as a fraction of the overall time for a cell to be processed by
an OR. Circuits with non-empty circuit queues are called
active circuits.

Each connection has an output buffer; data written to that
buffer will be transmitted to the next OR in FIFO order. As
multiple circuits generally share a single connection, the cells
in the circuit queues must be multiplexed into the output
buffer.

When there is room in the output buffer, the OR will
select an active circuit, and move some cells from its circuit
queue to the output buffer. If all of the cells are moved, the
circuit is marked inactive.

The contribution of this work is to change how Tor de-
cides from which active circuit to select cells. The previous
algorithm was simply to select active circuits in round-robin
fashion. We show that by making a more judicious selec-
tion, the performance of Tor for interactive circuits can be
notably improved, while minimally affecting performance for
circuits performing bulk data transfer, which tend to be de-
lay insensitive in any event.

In order to prioritize interactive circuits, we need to de-
cide, for example, which circuits are using HTTP, and which
circuits are using BitTorrent. Unfortunately, we cannot de-
termine the application protocol by looking directly at the
content of the cells, since all of the cells are encrypted ex-
cept for at the exit OR. On the other hand, circuits using



Figure 1: The Tor circuit structure for Experiment
1

HTTP may also perform bulk transfer, and we want to de-
prioritize them as well. Thus, the amount of traffic sent
recently should be an appropriate criterion on which to base
our scheduling decision. We should mention that we do not
want to block BitTorrent or similar applications by blocking
the port number at exit ORs, since Tor is intended to be
application neutral; additionally, port number blocking can
be easily circumvented by those file sharing applications.

2.3 Circuit Selection based on EWMA
We want to have a metric for“how many cells a circuit has

sent recently”, and base the circuit selection decision on this
metric. The metric needs to represent an average value over
a period of time of the activity for a circuit, and also needs
to decay over time, since we do not want the activity from
long ago to have a large impact on the current decision for
a circuit. EWMA seems to be a good choice for this metric.

First, we assign each circuit a cell count value, represent-
ing the average number of cells sent recently. Every time we
wish to flush some cells to the connection’s output buffer, we
calculate the decayed cell count value for each circuit, based
on the EWMA equation that supports irregularly-spaced ob-
servations:

At+∆t = At · 0.5
∆t
H

where At+∆t is the new cell count value, At is the old cell
count value, ∆t is the elapsed time since the last observation
and H is the “half life” parameter; that is, H determines the
interval after which the previous average is reduced by half.

After the calculation, the OR picks the circuit with the
smallest cell count value, and flushes that circuit’s cell queue
to the output buffer of the connection; the cell count value
is updated correspondingly:

A′t+∆t = At+∆t + Ct,t+∆t

where Ct,t+∆t is the number of cells sent in the interval
(t, t+ ∆t].

The value of H, as well as a switch for turning our whole
algorithm on or off, can be set in the Tor configuration file.

As the equation shows, circuits with low or bursty traffic
will have low cell counts. These circuits are likely to be those
which are still in their creation phase, as well as circuits
for web browsing or instant messaging, which are exactly
the circuits we want to prioritize. For each OR, cells in
interactive circuits will wait for less time in the circuit queue
than without prioritization. The performance of interactive
circuits, on the whole, will be improved. As we show later,
the performance of circuits which are deprioritized suffers
only minimally.
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Figure 2: CDF for time cost of downloading a small
file for unprioritized and prioritized Tor

3. EXPERIMENTS AND RESULTS

3.1 End-to-End Timing Analysis
The experiments in this section were performed on Plan-

etLab. PlanetLab [17] is a research network consisting of
nodes distributed globally, much like Tor. We selected a set
of five nodes from PlanetLab, and ran a private Tor network
on them. A typical Tor circuit consists of three ORs. The
OR directly connecting to an OP, the OR directly connect-
ing to the server, and the OR in the middle are called the
entry OR, exit OR, and middle OR, respectively. In our ex-
periment, we picked two nodes as directory authorities and
three nodes as ORs; we ran our modified Tor on the three
ORs.

Experiment 1 was designed to measure the time cost of
downloading a small file (simulating web browsing), while
there are competing bulk transfer circuits. According to
[23], the average web page size (including HTML, CSS and
images) grew from 93KB to over 312KB, from 2003 to 2008.
We picked 300KB as the file size we use for our experiment.
The file is hosted on the same machine as the exit OR, in
order to eliminate the variance introduced by the connection
between the web server and the exit OR.

We configured three local clients, who select the same
route, as shown in Figure 1. Two clients were performing
bulk transfer. We tried to download the 300KB file using
the other client, and recorded the elapsed time. We used
H = 66 for the algorithm, which means that after every
66 seconds, the old cell count will decay by a factor of 0.5.
This corresponds to our initial estimate that a decay of 10%
over 10 seconds would be appropriate. We performed 100
downloads for both unprioritized Tor (the stock Tor) and
our prioritized version of Tor. The cumulative distribution
function (CDF) of the results is shown in Figure 2.

In Experiment 1, we observed an average of 32% decrease
in the time to download a small file while there are simul-
taneous competing bulk transfers — the median time de-
creased from 2.60 seconds to 1.75 seconds.

During the experiment, when switching between unprior-
itized and prioritized Tor, we switched on the algorithm for
all three ORs at the same time. But does prioritizing one
of the ORs contribute the most to the effect, or do all three
of them contribute equally to the improvement? In order
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Figure 3: CDF for time cost of downloading a small
file for unprioritized and prioritized Tor, under traf-
fic simulation

to investigate this issue, we selectively turned on the algo-
rithm on individual ORs, and repeated the experiment to see
the effect. We discovered that switching on the algorithm
on the entry and exit ORs does not have noticeable effects,
while by turning on the algorithm on the middle OR, we
immediately see the improvement that is close to the overall
improvement we obtained. The reason is that for the nodes
we chose on PlanetLab, the link between the middle OR and
the entry OR is slower than the link between the middle OR
and the exit OR, so that cells (being sent from the server
to the client) accumulated at the middle OR. This indicates
that the effectiveness of the algorithm highly depends on
the conditions of individual ORs; when an OR’s output link
is congested, cells will wait in the circuit queue for longer
periods, and our algorithm will make a more noticeable dif-
ference.

For the real Tor network, the traffic distribution is quite
different from the previous experiment. McCoy et al. [12]
identified the exit traffic protocol distribution of Tor in 2008.
HTTP accounted for 92.45% of all connections, and 57.97%
of the total bytes sent; SSL accounted for 4.06% of all con-
nections, and 1.55% of the total bytes sent; BitTorrent ac-
counted for 3.33% of all connections, and 40.20% of the
total bytes sent. Other protocols such as Instant Messag-
ing, E-Mail, FTP, and Telnet accounted for less than 1%
of both connections and bytes sent. From the cited results,
we can conclude that BitTorrent consumed a disproportion-
ately large amount of bandwidth compared to other proto-
cols. This justifies our intention of giving interactive streams
higher priority. On the other hand, in reality, the ratio of
busy circuits is not as high as in our previous experiment;
i.e., there are not as many low-priority circuits. To see how
much improvement we can get, we created a traffic simula-
tor that randomly generates network traffic according to the
connection-to-throughput ratio in the above statistics.

In Experiment 2, we ran the traffic simulator on multiple
clients, to simulate the Tor network. We downloaded a small
file and recorded the time cost. There were 1000 attempts
for both unprioritized and prioritized Tor. The results are
shown in Figure 3.

Due to the large variance in the network conditions, the
results have large variance in both unprioritized and pri-
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Figure 4: Time points for a cell’s life cycle in the
middle OR, unprioritized
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Figure 5: Time points for a cell’s life cycle in the
middle OR, prioritized

oritized Tor (ranging from 1 second to almost 1 minute).
However, from the CDF graph, we can still find 10–20%
improvement at each quantile.

3.2 Fine-grained Timing Analysis
In Experiment 3, we examine the life cycle of a cell in an

OR, check how much time it spends at each stage, and see
where we have improved.

Remember that when a cell reaches an OR, it enters the
circuit queue to which it belongs, and waits to be flushed
to the output buffer of the connection. When the output
buffer is empty or has flushed some cells, one circuit will be
selected to flush its cells to the output buffer. Then the cells
wait in the output buffer until they are flushed to the socket.

The testbed setting is similar to Experiment 1. We use
libspe [19] to record the time points related to the cells:
when cells enter the circuit queue, when they are moved
from the circuit queue to the output buffer of the connection,
and when they leave the output buffer. We record those time
points of cells in the middle OR (as we mentioned, using our
algorithm on the middle OR showed the most improvement
in our experiment), for both unprioritized and prioritized
Tor.

Figures 4 and 5 show the results for a single download
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Figure 6: Time cells wait in the circuit queue in the
middle OR

of a small file. The x-axis indicates the time a cell enters
the circuit queue, and the y-axis indicates the time the cell
enters the circuit queue (the straight diagonal line), the time
the cell moved from the circuit queue to the output buffer,
and the time the cell is flushed from the output buffer. Thus
the gap between the two lower lines indicates the time a
cell spends in a circuit queue, while the gap between the
upper two lines indicates the time a cell spends in the output
buffer, waiting to be written to the socket. We can see that,
in unprioritized Tor, a cell spends most of its life cycle in
the circuit queue waiting to be flushed. The prioritized Tor
greatly reduced this duration.

Next, we recorded the time cells spent in the circuit queue.
We see significant improvement in these durations; in fact,
the average duration spent in the circuit queue decreased
from 653 milliseconds to 115 milliseconds. The actual im-
provement in latency is even greater than the improvement
in the average duration. Figure 6 shows the amount of time
cells wait in the circuit queue, which is just the difference
between the lower two lines in each of Figures 4 and 5. We
can see that as cells arrive, more cells are queuing up within
the OR, making the latency higher. Our improvement is
more noticeable when the cells are queuing up: the decrease
in latency is as high as 1 second, in this case. This explains
the results we obtained in Experiment 1.

3.3 Experiments on Live Tor Nodes
In order to test the effectiveness of our algorithm on the

real Tor network, we need to perform the experiments on
running Tor nodes, with real Tor traffic going through them.
In this section, we describe our live experiments and results,
and analyze the limitations.

3.3.1 Bandwidth Requirement for Live Tor Nodes
The effectiveness of our algorithm depends on whether

multiple circuits are sharing a single connection between a
pair of ORs. According to [1], as of March 2010, there were
around 1500 ORs in Tor network, with the highest reported
bandwidth as much as 15 MB/s.

We downloaded the descriptors of all the ORs, and calcu-
lated the sum of the advertised bandwidth. The total band-
width was 440 MB/s. We assume that there are 250,000
simultaneous Tor users (circuits), who select ORs randomly
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Figure 7: CDF for time cost of downloading a small
file using unprioritized and prioritized middle OR,
in the real Tor network
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Figure 8: CDF for time cost of downloading a small
file using unprioritized and prioritized middle OR,
in the real Tor network, during afternoons ET

using their bandwidth as weights. Assume that we have a
pair of ORs, each having bandwidth BW MB/s. The ex-
pected number of circuits between this pair of ORs is then
250000( BW

440
)2 = 1.29(BW )2. In order to see several circuits

between the pair to make the prioritization effective, we re-
quire BW ≈ 2 MB/s at least.

The above calculation is only a rough estimate to ensure
the ORs we select are in the right range. The accurate esti-
mate of the number of circuits would be more complicated.

3.3.2 Testbed Setup
Initially, we planned to run three ORs on selected Plan-

etLab nodes, and let them join the Tor network. However,
among the PlanetLab nodes, few could reach such a high
bandwidth requirement. In fact, most nodes have band-
width lower than 100 KB/s. With these nodes, it is hardly
possible to attract multiple circuits within the connection.

We found one PlanetLab node at Princeton University
that has bandwidth as high as 1 MB/s. However, the daily
usage on the node is limited to 10 GB. Since the startup pro-
cess of an OR requires several hours to complete (including
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Figure 9: CDF for time cost of downloading a small
file using unprioritized and prioritized middle OR,
in the real Tor network, during midnights ET

publishing descriptors, computing consensus by directory
authorities, advertising bandwidth and re-advertising band-
width after attracting traffic), the throughput limit makes
it impossible to perform any tests.

Instead, we used gurgle.cs.uwaterloo.ca, a machine lo-
cated at the University of Waterloo, which has a compara-
bly high bandwidth of 3 MB/s. We also selected two exist-
ing ORs with high bandwidth: blutmagie with 10 MB/s,
and coldbotTorHosting1 with 10 MB/s. We used blut-

magie as the entry OR, planetgurgle as the middle OR, and
coldbotTorHosting1 as the exit OR. In this way, the esti-
mated number of circuits between planetgurgle and cold-

botTorHosting1 is 1.29(3 × 10) ≈ 39, which is more than
enough for our purpose.

The disadvantage compared to using PlanetLab nodes is
that we could only control one OR in our circuit (the middle
OR), thus the results will only show the improvement of
prioritizing at one hop. However, as we will see later, the
results are still noticeably in our favour.

The target file to fetch is hosted in the University of Wa-
terloo, with a size of 87 KB. We did not introduce artificial
bulk transfer traffic, so this experiment is representative of
normal user experience. We used webfetch [2] to fetch the
file using our configured circuit. There is a 20-second break
between every successive fetch. We ran our experiments in
March 2010.

We note that we only gathered timings from our own
client; we did not measure any traffic belonging to other
users of the live Tor network.

3.3.3 Experimental results
We performed the experiment during different periods in a

day, executing 250 downloads with planetgurgle configured
in each of the unprioritized and prioritized modes. The CDF
of the results are shown in Figure 7.

It is interesting to note that this graph is quite similar to
our traffic simulation tests on PlanetLab (Figure 3). With
our prioritization algorithm enabled, the median time de-
creased from 11.49 seconds to 9.04 seconds.

One phenomenon we observed is that during different pe-
riods in a day, the test results differ markedly. The latencies
are much lower in the afternoons ET (Eastern Time; the
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Figure 10: CDF for time cost of bulk download using
unprioritized and prioritized middle OR, in the real
Tor network

timezone of New York and Toronto) than around midnight
ET. This may indicate that most Tor users come from the
other half of the globe. Indeed, according to [9], only a small
percentage of Tor users come from North America and South
America combined.

In order to better observe the effectiveness of our patch,
we divided the results into two groups: a “fast” group which
were performed during afternoons and a “slow” group which
were performed around midnight. The CDFs are shown in
Figure 8 and Figure 9.

The figures indicate that under various network condi-
tions, our algorithm makes an observable improvement for
bursty HTTP downstream traffic.

3.4 Effects on Bulk Transfer
Our new scheduling algorithm should not degrade the per-

formance of bulk transfer to any noticeable extent. By Lit-
tle’s Law [7], L = λW , where L is the queue length (average
number of cells in the queue), λ is the arrival rate (long term
throughput), and W is the average time a cell spends in the
queue (latency). Our algorithm only changes the order of
cells within a queue, thus does not change L and W . Under
the assumption that the buffers are large enough, the long-
term throughput for bulk transfer should stay the same.

We also experimentally compared the performance of bulk
transfer circuits on our live node. We used our Tor client
to continuously fetch a 4 MB file hosted at the University
of Waterloo. There were 200 trials for each of unprioritized
and prioritized Tor; the results are shown in Figure 10.

From the CDF, we see very little effect of our algorithm
on bulk transfer. The average time cost is 416 seconds for
unprioritized Tor, with standard deviation 335 seconds, and
419 seconds for prioritized Tor, with standard deviation 403
seconds. There is no statistically significant difference in
the performance of unprioritized and prioritized Tor. In
fact, the Kolmogorov-Smirnov (K-S) statistic [15] for the

two distributions is 0.065 <
q

2
N

, where N = 200 is the size

of each sample. This indicates that the (two-sample) K-S
test cannot confirm that the two samples are from different
distributions. Additionally, as we mentioned earlier, bulk
transfer usually takes at least several minutes to complete,



and users doing such transfers will have more tolerance of
the increased delay if they ever notice it at all.

3.5 Overhead
The overhead for our scheduling algorithm mainly lies in

the computation of EWMA values, and the cost of acquiring
the current system time. This requires extra CPU resources
compared to the stock Tor. However, most Tor nodes are
limited by the network capacity, not by their CPUs [18].
Our scheduling algorithm will not degrade the performance
of those nodes.

However, the Tor maintainers reported to us that the bus-
iest Tor nodes are in fact CPU-limited. For these nodes, we
need to make sure that prioritized Tor does not perform
worse than the stock Tor. When we completed the first
version of the scheduling algorithm, and performed local ex-
periments (with very high network capacity, unlike the Tor
network), we found that it did in fact perform worse than
the stock Tor, and used a high ratio of CPU resources. We
identified that the frequent calls to gettimeofday accounted
for the majority of the time so consumed. When each cell
is flushed, we need to know the system time in order to cor-
rectly update the EWMA values, but system calls at this
frequency become a burden to the CPU.

We observed that during each write event (when cells are
flushed into the output buffer), the differences in time of
flushing for each of the cells in that write are usually in the
handful of microseconds range. Since we do not need preci-
sion to the microsecond level for the calculation of EWMA
values, we modified the algorithm so that we only acquire
the system time at the beginning of the write event han-
dling process, and store the time value. The subsequent
acquisitions of system time use the cached value instead. In
this manner, we reduced the total number of gettimeofday
system call by two orders of magnitude.

After the optimization, we again performed a local exper-
iment to find the overhead. The experiment was performed
on a commodity desktop computer, with AMD Athlon 64
X2 Dual Core 5600+ processor, 3.2GB memory, Ubuntu
8.04 operating system. We ran all the Tor nodes, including
three ORs, two directory authorities, and two OPs locally.
The web server was also hosted locally. This setup max-
imally stresses the CPU. We performed the experiment in
which the two clients simultaneously fetch a 5MB file from
the web server. There were 200 trials for both unpriori-
tized Tor and prioritized Tor. During the experiment, the
CPU usage went up to 100%, so that our nodes were indeed
CPU-limited. The CDF of the results is shown in Figure 11
(“Unprioritized” and “Prioritized (list)”).

The results showed that the average time cost is 1.66 sec-
onds for unprioritized Tor, with standard deviation 0.15 sec-
onds, and 1.69 seconds for prioritized Tor, with standard
deviation 0.24 seconds. There is no statistically significant
difference in the performance of unprioritized and prioritized
Tor in the local experiment, which means that even in the
rare scenario that the Tor node is CPU-limited, the schedul-
ing algorithm will not make it significantly slower.

Nonetheless, Nick Mathewson of The Tor Project has opti-
mized [11] the implementation of our algorithm to further re-
duce the overhead. Instead of using a circular linked list, the
active circuits are kept in a minheap-based priority queue.
Further, the computation of the EWMA cell counts is op-
timized; noting that only the relative, and not the absolute
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Figure 11: CDF for time cost of downloading a
small file for unprioritized and prioritized Tor, un-
der CPU-limited scenario

EWMA cell counts matter (since their purpose is just to
pick the active circuit with the lowest cell count), an ar-
bitrary reference time point is picked, and cell counts are
computed relative to that time. That is, rather than de-
caying every circuit’s stored cell count value by a factor of

0.5
∆t
H , and then adding 1 for every cell sent, a single new

value V (representing the current weight of one cell, as com-
pared to a cell sent at the reference time point) is updated

by multiplying it by 0.5−
∆t
H = 2

∆t
H . This value V is added

to a circuit’s cell count for each cell it sends. This saves the
traversal of the list of all circuits (not just active circuits)
and a computation of the decayed cell count for each one,
which in our version occurs every time a cell is sent. Every
so often, the cell counts for all circuits can be renormalized
by dividing them all by V , and resetting V to 1. This has
the effect of updating the reference time point to the current
time. It is important to note that this optimized computa-
tion maintains exactly the same circuit-selection behaviour
as our unoptimized implementation.

Mathewson’s patch not only reduces the load of the EWMA
computation, but also reduces the time cost of picking the
highest-priority circuit when many circuits co-exist in a con-
nection. We performed an experiment to test the overhead
with this patch in the CPU-limited scenario. The results
are also shown in Figure 11 (“Prioritized (minheap)”). The
average time cost is 1.65 seconds, with standard deviation
0.16 seconds, also not a statistically significant difference.
This version of our algorithm has been committed to the
the latest version (0.2.1.21) of Tor.

4. FINE TUNING OF THE ALGORITHM
The parameter H in our algorithm determines how far

back in time we want to look to calculate the cell counts for
the circuits. This time horizon should be chosen to distin-
guish bursty HTTP circuits from circuits for continuous data
transfer. For the PlanetLab experiments, the value of the
parameter does not matter much, since the goal is to make
HTTP circuits always have higher priority over bulk transfer
circuits, and any parameter within a reasonable range will
satisfy.

However, for the Tor nodes on the live network, the con-
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ditions are more complex. HTTP circuits are not only com-
peting with bulk transfer circuits, they are competing with
each other as well. The parameter should meet the require-
ment of distinguishing the two sets in practical scenarios.
On the other hand, the standards may differ from OR to
OR, depending on the capacity and the network condition.
For example, if an OR is slow or H is set too small, the al-
gorithm will quickly forget a circuit’s past activity. A bulk
transfer circuit will quickly drop to the same cell count as
a newly created HTTP circuit, and compete with it. On
the other hand, if the OR is fast or H is set too large, a
newly created bulk transfer circuit will be prioritized over
an HTTP circuit created long ago.

In this section, we experiment with different values of the
parameter, to examine the effects of the parameter on HTTP
traffic.

4.1 Testbed Setup
The testbed setup is similar to the setup of our live Tor

network test. We selected a variety of parameter values for
the middle OR, planetgurgle, and tested the performance.

We used git version 0.2.1.24 of Tor on the middle OR.
In the configuration file, the parameter CircuitPriority-

Halflife is the H value we mentioned earlier, which repre-
sents the interval after which the cell count for each circuit
is decreased by half.

In this experiment, we randomly select a value for H from
the set {−1, 1.5, 3, 4.5, 10, 20, 33, 66, 99} for our middle OR
(-1 indicates unprioritized), and fetch a small file (87 KB)
hosted at the University of Waterloo. We repeat this until
each value has 200 datapoints, and collate the results.

4.2 Experimental Results
The results for the download times for different values of

H are shown in Figure 12 and Figure 13. Because of the
density of the lines, we only show a fraction of the whole
CDF in Figure 12. For ease of visualizing the data, in Fig-
ure 13, we show the 25th, 50th, and 75th percentile latencies
for a range of different H values (the curves) as well as for
unprioritized Tor (the horizontal lines).

The figures show that smaller values of H (1.5, 3, 4.5)
perform only marginally better, if at all, than unprioritized
Tor. This makes sense, as the past behaviour of a circuit
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will quickly be forgotten, and the bulk transfer circuits will
have cell counts low enough to compete with HTTP circuits.
The largest value 99 does not perform much better than
unprioritized Tor either, since for our HTTP circuit, the
behaviour will accumulate to a large cell count value and
lose priority. The other values, 10, 20, 33 and 66, seem to
be good values for our OR.

The results match our assumption: the H value only need
ensure that bulk transfer circuits will have higher cell counts
than HTTP circuits; a wide range of values can satisfy this
requirement. A value around 20 or 30 will likely satisfy most
ORs in the Tor network. A global default value can be set in
the directory authorities’ consensus, so that OR operators do
not need to manually configure it. Even if an OR operator
misconfigures this value, for example, by setting it to 1.5,
the performance will not be greatly harmed, as shown by
our experiment.

However, as the Internet and the Tor network evolve, dif-
ferent protocols will start to use Tor, and the traffic dis-
tribution will not stay constant. The parameter should be
regularly re-evaluated.



5. EFFECTS ON HIDDEN SERVICES
Tor’s Hidden Services [3] mechanism allows users to pro-

vide TCP-based services, such as operating web servers,
without revealing the server’s IP address. Instead of pub-
lishing its IP address, the hidden server publishes a server
descriptor, containing a signed list of introduction points to
the directory authorities. The client downloads the descrip-
tor, connects to one of the introduction points, selects one
OR as the rendezvous point, builds a circuit to it, and tells
the hidden server the rendezvous point selected. Then the
server connects to the rendezvous point, and begins commu-
nicating with the client.

Because of the different design goals, the underlying net-
work traffic for hidden services is much more complex than
for regular public services. Accessing hidden services in-
volves more than a dozen ORs and multiple rounds of nego-
tiation; as a result, it is much slower than accessing public
services through Tor.

The most time-consuming part of the process for a client
to access a hidden service is circuit creation. According to
statistics [8], the average time for hidden service circuit cre-
ation is 33.8 seconds, much higher than that of public ser-
vices. After the circuit creation, the communication between
the client and the server becomes almost as fast as accessing
public services through Tor, as we will show later through
our experiments.

Our EWMA algorithm is ideal for prioritizing the circuit
creation phase of Hidden Services, since the command cells
for circuit creation have small sizes (512 bytes each), and
they are the first cells sent by a circuit. These cells should
get the highest priority almost independent from the value
of the EWMA parameter.

We tested the performance improvement of Hidden Ser-
vices, using a similar approach to our experiments in Sec-
tion 3.3, above. We used H = 33 for our middle OR. The
hidden server is a desktop machine at the University of Wa-
terloo. The server is also configured to use planetgurgle as
the middle OR for all of its circuits.

We modified webfetch to support SOCKS4a, in order to
resolve URLs for hidden services. We also instrumented
webfetch to separately record the time for connection initial-
ization and the time for webpage fetching. For each client
instance, we perform four fetches of the target webpage. The
latter three fetches will not include circuit creation, and so
should be much faster than the first one. We performed
200 groups of tests (200 circuit creations). The connection
initialization time for the latter three fetches is very short
(averaging 2.0 seconds) compared to the first fetch. Since
we are mainly concerned about the circuit creation, we only
show the connection initialization time for the first fetch,
and the download time for webpages. The CDF is shown in
Figure 14.

As we notice, there are improvements in the connection
initialization time in each quantile. The average time de-
creased from 19.3 seconds to 17.1 seconds (11.4%). This
time consists of mostly circuit creation. Note that only two
hops out of seven are prioritized (planetgurgle). We ex-
pect more improvement if all the ORs in the circuits are
prioritized.

6. DISCUSSION

6.1 Compatibility with the Existing Tor
For any upgrade of a distributed system the size of Tor,

compatibility is a fundamental issue to consider. Requiring
simultaneous upgrades for all Tor nodes would be a great re-
sisting force to the implementation. Fortunately, since our
algorithm only changes the order that cells are multiplexed
from different circuits within the OR, it does not require
any change in other ORs. Consequently, each OR can be
upgraded individually, and each upgrade would make some
improvement, as can be seen by the results of our experi-
ments.

Our algorithm can also be turned on and off conveniently,
by setting the parameter in the Tor configuration file, and
switched at runtime by sending a SIGHUP signal to Tor to
reload its configuration file.

6.2 Effects on Security Properties of Tor
An important question is naturally whether these improve-

ments in performance would enable an attack not previously
present. We point out for emphasis that Tor is known to be
insecure against an adversary that can see both ends of a
circuit [6, 13, 21]. The most apparent avenue for attack is
for an attacker, who can see just one end of a circuit, to
try to determine whether the other end is an OR that has
been upgraded to use this protocol, or not, by observing the
performance of the circuit.

Here, Tor’s large variance in performance comes in handy.
Although our method provides a noticeable improvement,
the improvement is still small as compared to the very large
variance; see Figure 7. It would seem to be as easy for an
attacker to learn in the stock Tor, for example, whether the
OR at the other end of the circuit had high or low band-
width.

One may also contemplate an attack in the style of [5],
wherein the attacker constructs his own circuits through
various ORs in the network in order to observe interfer-
ence with a target circuit. This attack is already possible in
stock Tor [5]; the fixes to Tor made as a result of that paper
(limiting circuits to eight hops) only prevent the bandwidth
amplification portion of the attack.

7. RELATED WORK
A number of works examine Tor in an attempt to improve

its performance; we give an overview of some of them, and
other work related to our improvements, in this section.

7.1 Tor over DTLS
One area of investigation in improving Tor’s performance

is in fighting the improper application of TCP’s congestion
control mechanisms, which degrade Tor’s performance. Be-
tween each pair of ORs, multiple circuits may share the same
TCP connection, and their traffic is multiplexed within this
connection using the same socket. When the number of
unacknowledged packets in the socket buffer exceeds the
socket’s congestion window, TCP’s congestion control mech-
anism takes effect, and TCP will back off until more ac-
knowledgements are received. This mechanism is desirable
if there is only one circuit using the connection; however, if
there is more than one circuit, one circuit sending too much
data and triggering congestion control will cause cells on
other circuits to be prevented from being transmitted.



Reardon and Goldberg [20] addressed this problem by us-
ing a TCP-over-DTLS tunnel. Instead of using a TLS/TCP
connection between each pair of ORs, a DTLS/UDP connec-
tion is established, to prevent the congestion control mech-
anism incurred by one circuit from preventing other circuits
from sending data. On top of DTLS/UDP, a user-level TCP
connection is established for each circuit, to guarantee in-
order delivery, congestion control, and flow control on a per-
circuit basis.

Reardon and Goldberg’s work concentrated on a fair ap-
plication of the congestion control mechanism: the fault of
one circuit should not affect other circuits. In comparison,
our approach aims to be fair on resource allocation among
circuits: circuits that consume few resources recently should
be prioritized over other circuits.

7.2 Opportunistic Bandwidth Measurement
Tor relies on ORs’ self-reported bandwidth values as weights

to make router selection decisions. This is not necessarily
accurate, and also may encourage malicious ORs to report a
higher bandwidth to attract traffic. Snader and Borisov [22]
proposed an opportunistic bandwidth measurement algo-
rithm to replace the self-reported bandwidth; this is more
accurate, and responds to changing load conditions quickly,
while at the same time preventing low-resource routing at-
tacks. In this way, Tor’s bandwidth resources are allocated
more efficiently, and the overall performance is improved.

Snader and Borisov also proposed a mechanism for users
to tune Tor’s parameter to select between circuits for higher
performance or higher anonymity, while incurring very little
cost of the other property.

Their work is orthogonal to ours; using both at the same
time should evince added benefits.

7.3 Internet QoS Schemes
Several QoS schemes exist for today’s Internet, including

Integrated Services, RSVP, Differentiated Services, MPLS,
and Constraint-Based Routing. [24] There are also schemes
for prioritizing bursty traffic in ATM networks. [14] Our ap-
proach is similar to those efforts, in the sense that Tor is
an overlay network and ORs act like Internet routers; we
wish to improve the QoS of HTTP traffic by adjusting the
scheduling policies within ORs.

Our EWMA algorithm is simple and effective in our sit-
uation. Nonetheless, incorporating ideas from other QoS
techniques into Tor would be an interesting avenue for fu-
ture work. One caveat is that in Tor, the contents of the
packets are unavailable to the ORs, so QoS methods based
on protocol analysis or deep packet inspection would be un-
suitable for our use.

8. FUTURE WORK

8.1 Prioritizing Connections within an OR
In the fine-grained analysis of a cell’s time spent within

the OR, we observed that our modifications resulted in a
reduction in the amount of time a cell spends waiting to
be flushed from the circuit queues of interactive circuits to
the connection output buffer. We also observed that the
cells still wait in the connection output buffer for a notice-
able amount of time. If this time can be reduced, hopefully
interactive circuits will benefit more in reducing the latency.

One possible approach is to reduce the size of the FIFO
output buffer, so that circuits are selected by priority closer
in time to when the cells flushed from them are sent over
the network. This will reduce head-of-line blocking within
the output buffer, and get cells from high-priority circuits
onto the network faster.

Another direction is to prioritize connections within an
OR as well, by assigning higher priority to the idle connec-
tions. A problem to consider is how to guarantee fairness,
since a busy connection may not be doing a bulk transfer; it
may simply contain many circuits, all doing web browsing.
Slowing down this connection is not the desired behaviour.
Thus, besides watching the connection’s activity, we might
also need to watch the circuits within it as well.

8.2 Gaming the EWMA Algorithm
Since the prioritization decisions are based on the be-

haviour of each circuit, a user can modify her bulk transfer
protocol to open many circuits and transfer parts of the file
with each circuit in a bursty way. Each circuit will then have
a lower EWMA value, and will be prioritized over HTTP and
other interactive protocols.

Because our EWMA algorithm does not significantly de-
grade the performance of bulk transfer, there is no strong
incentive for those bulk transfer users to implement such a
modification. However, such modification can make a speci-
fied protocol prioritized over any other protocol on Tor. We
should note that our algorithm does not introduce this at-
tack, since a user can still utilize multiple TCP connections
over multiple circuits on her protocol to make it more com-
petitive, even with unprioritized Tor. Indeed, using multi-
ple TCP connections on the regular (non-Tor) Internet will
yield an unfair share of bandwidth. [16] Investigations into
countermeasures will be a good direction for future work.

9. SUMMARY
In this paper we examined one source of Tor’s performance

issues. One of the factors that contributed to the bad per-
formance for interactive streams is the unfair scheduling al-
gorithm among circuits: interactive circuits will be greatly
slowed down because of co-existent non-interactive circuits
on the same connection. We proposed an EWMA-based
scheduling algorithm to prioritize the interactive circuits,
and performed experiments on PlanetLab as well as the ac-
tual Tor network. The results show that under realistic net-
work traffic, the interactive streams in prioritized Tor per-
forms about 10% to 20% better, in terms of latency. The
algorithm is completely compatible with the current Tor net-
work: the ORs can be upgraded gradually, it can be turned
on and off easily and on the fly, and the benefits will be seen
immediately. Also, the algorithm brings little overhead, even
on CPU-limited ORs.

Acknowledgements
We thank Ryan Henry, Femi Olumofin, Greg Zaverucha,
Roger Dingledine, and the anonymous reviewers for their
helpful suggestions on improving this paper. We gratefully
thank The Tor Project for their financial support, and also
for incorporating our results into the main Tor code. We
finally acknowledge MITACS and NSERC for their financial
support as well.



10. REFERENCES
[1] Tor Network Status. http://torstatus.kgprog.com/,

2009. Accessed April 2010.

[2] Tony Aiuto. webfetch.
http://tony.aiu.to/sa/webfetch/, 2004. Accessed
April 2010.

[3] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The Second-Generation Onion Router.
In Proceedings of the 13th USENIX Security
Symposium, pages 303–320, 2004.

[4] Roger Dingledine and Steven Murdoch. Performance
Improvements on Tor or, Why Tor is slow and what
we’re going to do about it. http://www.torproject.
org/press/presskit/2009-03-11-performance.pdf,
2009. Accessed April 2010.

[5] Nathan Evans, Roger Dingledine, and Christian
Grothoff. A Practical Congestion Attack on Tor Using
Long Paths. In Proceedings of the 18th USENIX
Security Symposium, pages 33–50, August 2009.

[6] Brian N. Levine, Michael K. Reiter, Chenxi Wang,
and Matthew K. Wright. Timing Attacks in
Low-Latency Mix-Based Systems. In Ari Juels, editor,
Proceedings of Financial Cryptography (FC ’04), pages
251–265. Springer-Verlag, LNCS 3110, February 2004.

[7] John D.C. Little and Stephen C. Graves. Little’s Law.
http://web.mit.edu/sgraves/www/papers/Little’

s%20Law-Published.pdf. Accessed April 2010.

[8] Karsten Loesing. Privacy-enhancing Technologies for
Private Services. PhD thesis, University of Bamberg,
2008.

[9] Karsten Loesing. Measuring the Tor Network.
http://metrics.torproject.org/papers/

directory-requests-2009-06-25.pdf, 2009.
Accessed April 2010.

[10] Karsten Loesing. Measuring the Tor Network from
Public Directory Information.
http://freehaven.net/~karsten/metrics/

measuring-tor-public-dir-info-final.pdf, 2009.
Accessed April 2010.

[11] Nick Mathewson. gitweb.torproject.org.
http://gitweb.torproject.org/tor.git?a=commit;

h=06e8370c33d6ccb73d55e9e8c3d2673c48d7b328,
2009. Accessed April 2010.

[12] Damon McCoy, Kevin Bauer, Dirk Grunwald,
Tadayoshi Kohno, and Douglas Sicker. Shining Light
in Dark Places. In Proceedings of the 8th Privacy
Enhancing Technologies Symposium, pages 66–67,
2008.

[13] Steven J. Murdoch and Piotr Zieliński. Sampled
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