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Abstract. We explore how Private Information Retrieval (PIR) can
help users keep their sensitive information from being leaked in an SQL
query. We show how to retrieve data from a relational database with
PIR by hiding sensitive constants contained in the predicates of a query.
Experimental results and microbenchmarking tests show our approach
incurs reasonable storage overhead for the added privacy benefit and
performs between 7 and 480 times faster than previous work.

Keywords: Private information retrieval, relational databases, SQL

1 Introduction

Most software systems request sensitive information from users to construct a
query, but privacy concerns can make a user unwilling to provide such informa-
tion. The problem addressed by private information retrieval (PIR) [3, 9] is to
provide such a user with the means to retrieve data from a database without
the database (or the database administrator) learning any information about
the particular item that was retrieved. Development of practical PIR schemes is
crucial to maintaining user privacy in important application domains like patent
databases, pharmaceutical databases, online censuses, real-time stock quotes,
location-based services, and Internet domain registration. For instance, the cur-
rent process for Internet domain name registration requires a user to first disclose
the name for the new domain to an Internet domain registrar. Subsequently, the
registrar could then use this inside information to preemptively register the new
domain and thereby deprive the user of the registration privilege for that do-
main. This practice is known as front running [17]. Many users, therefore, find
it unacceptable to disclose the sensitive information contained in their queries
by the simple act of querying a server.

Users’ concern for query privacy and our proposed approach to address it
are by no means limited to domain names; they apply to publicly accessible
databases in several application domains, as suggested by the examples above.

⋆ An extended version of this paper is available [22].



Although ICANN claims the practice of domain front running has subsided [17],
we will, however, use the domain name example in this paper to enable head-to-
head performance comparisons with a similar approach by Reardon et al. [23],
which is based on this same example.

While today’s most developed and deployed privacy techniques, such as onion
routers and mix networks, offer anonymizing protection for users’ identities, they
cannot preserve the privacy of the users’ queries. For the front running example,
the user could tunnel the query through Tor [12] to preserve the privacy of his
or her network address. Nevertheless, the server could still observe the user’s
desired domain name, and launch a successful front running attack.

The development of a practical PIR-based technique for protecting query
privacy offers users and service providers an attractive value proposition. Users
are increasingly aware of the problem of privacy and the need to maintain pri-
vacy in their online activities. The growing awareness is partly due to increased
dependence on the Internet for performing daily activities — including online
banking, Twittering, and social networking — and partly because of the rising
trend of online privacy invasion. Privacy-conscious users will accept a service
built on PIR for query privacy protection because no currently deployed secu-
rity or privacy mechanism offers the needed protection; they will likely be willing
to trade off query performance for query privacy and even pay to subscribe for
such a service. Similarly, service providers may adopt such a system because of
its potential for revenue generation through subscriptions and ad displays. As
more Internet users value privacy, most online businesses would be motivated to
embrace privacy-preserving technologies that can improve their competitiveness
to win this growing user population. Since the protection of a user’s identity
is not a problem addressed by PIR, existing service models relying on service
providers being able to identify a user for the purpose of targeted ads will not
be disabled by this proposal. In other words, protection of query privacy will
provide additional revenue generation opportunities for these service providers,
while still allowing for the utilization of information collected through other
means to send targeted ads to the users. Thus, users and service providers have
plausible incentives to use a PIR-based solution for maintaining query privacy.
In addition, the very existence of a practical privacy-preserving database query
technique could be enough to persuade privacy legislators that it is reasonable
to demand that certain sorts of databases enforce privacy policies, since it is
possible to deploy these techniques without severely limiting the utility of such
databases.

However, the rudimentary data access model of PIR is a limiting factor in
deploying successful PIR-based systems. These models are limited to retrieving
a single bit, a block of bits [3, 9, 18], or a textual keyword [8]. There is therefore
a need for an extension to a more expressive data access model, and to a model
that enables data retrieval from structured data sources, such as from a relational
database. We address this need by integrating PIR with the widely deployed
SQL.



Dynamic SQL is an incomplete SQL statement within a software system,
meant to be fully constructed and executed at runtime [26]. It requires only a
single compilation that prepares it for subsequent executions. It is therefore a
flexible, efficient, and secure way of using SQL in software systems. We observe
that the shape or textual content of an SQL query prepared within a system is
not private, but the constants the user supplies at runtime are private, and must
be protected. For domain name registration, the textual content of the query is
exposed to the database, but only the textual keyword for the domain name is
really private. For example, the shape of the dynamic query in Listing 1 is not
private; the question mark ? is used as a placeholder for a private value to be
provided before the query is executed at runtime.

Listing 1 Example Dynamic SQL query (database schema as in [22])
SELECT t1.domain, t1.expiry, t2.contact

FROM regdomains t1, registrar t2

WHERE (t1.reg_id = t2.reg_id) AND (t1.domain = ? )

Our approach to preserving query privacy over a relational database is based
on hiding such private constants of a query. The client sends a desensitized
version of the prepared SQL query appropriately modified to remove private
information. The database executes this public SQL query, and generates ap-
propriate cached indices to support further rounds of interaction with the client.
The client subsequently performs a number of keyword-based PIR operations [8]
using the value for the placeholders against the indices to obtain the result for
the query.

None of the existing proposals related to enabling privacy-preserving queries
and robust data access models for private information retrieval makes the noted
observation about the privacy of constants within an otherwise-public query.
These include techniques that eliminate database optimization by localizing
query processing to the user’s computer [23], problems on querying Database-
as-a-Service [16, 15], those that require an encrypted database before permitting
private data access [25], and those restricted to simple keyword search on textual
data sources [4]. This observation is crucial for preserving the expressiveness and
benefits of SQL, and for keeping the interface between a database and existing
software systems from changing while building in support for user query privacy.
Our approach improves over previous work with additional database optimiza-
tion opportunities and fewer PIR operations needed to retrieve data. To the best
of our knowledge, we are the first to propose a practical technique that lever-
ages PIR to preserve the privacy of sensitive information in an SQL query over
existing commercial and open-source relational database systems.

Our contributions. We address the problem of preserving the privacy of sen-
sitive information within an SQL query using PIR. In doing this, we address two
obstacles to deploying successful PIR-based systems. First, we develop a generic
data access model for private information retrieval from a relational database
using SQL. We show how to hide sensitive data within a query and how to use



PIR to retrieve data from a relational database. Second, we develop an approach
for embedding PIR schemes into the well-established context and organization
of relational database systems. It has been argued that performing a trivial PIR
operation, which involves having a database send its entire data to the user,
and having the user select the item of interest, is more efficient than running a
computational PIR scheme [1, 27]; however, information-theoretic PIR schemes
are much more efficient. We show how the latter PIR schemes can be applied
in realistic scenarios, achieving both efficiency and query expressivity. Since re-
lational databases and SQL are the most influential of all database models and
query languages, we argue that many realistic systems needing query privacy
protection will find our approach quite useful.

The rest of this paper is organized as follows: Section 2 provides background
information on PIR and database indexing. Section 3 discusses related work,
while Section 4 details the threat model, security, and assumptions for the paper.
Section 5 provides a description of our approach. Section 6 gives an overview of
the prototype implementation, results of microbenchmarking and the experiment
used to evaluate this prototype in greater depth. Section 7 concludes the paper
and suggests some future work.

2 Preliminaries

2.1 Private Information Retrieval (PIR)

PIR provides a means to retrieve data from a database without revealing any
information about which item is retrieved. In its simplest form, the database
stores an n-bit string X , organized as r data blocks, each of size b bits. The
user’s private input or query is an index i ∈ {1, ..., r} representing the ith data
block. A trivial solution for PIR is for the database to send all r blocks to the
user and have the user select the block of interest at index i (i.e., Xi), but this
carries a very poor communication complexity.

The three important requirements for any PIR scheme are correctness (re-
turns the correct block Xi to the user), privacy (leaks no information to the
database about i and Xi) and non-triviality (communication complexity is sub-
linear in n) [10]. An additional requirement, which is not often addressed in the
published literature, is implementation (i.e., computational) efficiency [1, 27].
While the performance of information-theoretic PIR schemes are generally bet-
ter [14], this neglect of computational overhead has led to single-database PIR
schemes that are slow for large databases [27]. On the other hand, multi-server
information-theoretic PIR schemes are much more efficient than the trivial so-
lution and their use is justified in situations where the user lacks the bandwidth
and local storage for the trivial download of data. Recent attempts at build-
ing practical single-database PIR [31] using general-purpose secure coprocessors
offers several orders of magnitude improvement in performance. Nevertheless,
the potential application of PIR in several practical domains has been largely
unrealized with no “fruitful” or “real world” practical application.



A related cryptographic construction to PIR is oblivious transfer (OT) [20,
21]. In OT, a database (or sender) transmits some of its items to a user (or
chooser), in a manner that preserves their mutual privacy. The database has
assurance that the user does not learn any information beyond what he or she
is entitled to, and the user has assurance that the database is unaware of which
particular items it received. OT and the related Symmetric PIR (SPIR) [19] can
thus be seen to be generalizations of PIR. Those protocols could easily be used
in place of PIR in our work, with the concomitant extra computational cost.

2.2 Indexing

Data can be indexed by a key formed either from the values of one or more
attributes or from hashes (generally not cryptographic hashes) of those values.
Indices are typically organized into tree structures, such as B+ trees where in-
ternal or non-leaf nodes do not contain data; they only maintain references to
children or leaf nodes. Data are either stored in the leaf nodes, or the leaf nodes
maintain references to the corresponding tuples (i.e., records) in the database.
Furthermore, the leaf nodes of B+ trees may be linked together to enable se-
quential data access during range queries over the index; range queries return
all data with key values in a specified range.

Hashed indices are specifically useful for point queries, which return a single
data item for a given key. For many situations where efficient retrieval over a
set of unique keys is needed, hashed indices are preferred over B+ tree indices.
However, it is challenging to generate hash functions that will hash each key to
a unique hash value. Many hashed indices used in commercial databases, for this
reason, use data partitioning (bucketization) [16] techniques to hash a range of
values to a single bucket, instead of to individual buckets. Recent advances [5, 6]
in perfect hash functions (PHF) have produced a family of hash functions that
can efficiently map a large set of n key values (on the order of billions) to a set
of m integers without collisions, where n is less than or equal to m.

3 Related Work

A common assumption for PIR schemes is that the user knows the index or
address of the item to be retrieved. However, Chor et al. [8] proposed a way to
access data with PIR using keyword searches over three data structures: binary
search tree, trie and perfect hashing. Our work extends keyword-based PIR to
B+ trees and PHF. In addition, we provide an implemented system and combine
the technique with the expressive SQL. The technique in [8] neither explores
B+ trees nor considers executing SQL queries using keyword-based PIR.

Reardon et al. [23] similarly explore using SQL for private information re-
trieval, and proposed the TransPIR prototype system. This work is the closest to
our proposal and will be used as the basis for comparisons. TransPIR performs
traditional database functions (such as parsing and optimization) locally on the



client; it uses PIR for data block retrieval from the database server, whose func-
tion has been reduced to a block-serving PIR server. The benefit of TransPIR
is that the database will not learn any information even about the textual con-
tent of the user’s query. The drawbacks are poor query performance because the
database is unable to perform any optimization, and the lack of interoperability
with any existing relational database system.

An interesting attempt to build a practical pseudonymous message retrieval
system using the technique of PIR is presented in [24]. The system, known
as the Pynchon Gate, helps preserve the anonymity of users as they privately
retrieve messages using pseudonyms from a centralized server. Unlike our use
of PIR to preserve a user’s query privacy, the goal of the Pynchon Gate is to
maintain privacy for users’ identities. It does this by ensuring the messages a
user retrieves cannot be linked to his or her pseudonym. The construction resists
traffic analysis, though users may need to perform some dummy PIR queries to
prevent a passive observer from learning the number of messages she has received.

4 Threat Model, Security and Assumptions

4.1 Security and adversary capabilities

Our main assumption is that the shape of SQL queries submitted by the users is
public or known to the database administrator. Applicable practical scenarios in-
clude design-time specification of dynamic SQL by programmers, who expect the
users to supply sensitive constants at runtime. Moreover, the database schema
and all dynamic SQL queries expected to be submitted to, for example, a patent
database, are not really hidden from the patent database administrator. Simul-
taneous protection of both the shape and constants of a query are outside of the
scope of this work, and would likely require treating the database management
system as other than a black box.

The approach presented in this paper is sufficiently generic to allow an appli-
cation to rely on any block-based PIR system, including single-server, multi-
server, and coprocessor-assisted variants. We assume an adversary with the
same capability as that assumed for the underlying PIR protocol. The two com-
mon adversary capabilities considered in theoretical private information retrieval
schemes are the curious passive adversary and the byzantine adversary [3, 9]. Ei-
ther of these adversaries can be a database administrator or any other insider
to a PIR server.

A curious passive adversary can observe PIR-encoded queries, but should be
incapable of decoding the content. In addition, it should not be possible to differ-
entiate between queries or identify the data that makes up the result of a query.
In our context, the information this adversary can observe is the desensitized
SQL query from the client and the PIR queries. The information obtained from
the desensitized query does not compromise the privacy of the user’s query, since
it does not contain any private constants. Similarly, the adversary cannot obtain
any information from the PIR queries because PIR protocols are designed to be
resistant against an adversary of this capability.



A byzantine adversary with additional capabilities is assumed for some multi-
server PIR protocols [3, 14]. In this model, the data in some of the servers could
be outdated, or some of the servers could be down, malfunctioning or malicious.
Nevertheless, the client is still able to compute the correct result and determine
which servers misbehaved, and the servers are still unable to learn the client’s
query. Again, in our specific context, the adversary may compromise some of
the servers in a multi-server PIR scenario by generating and obtaining the result
for a substitute fake query or executing the original query on these servers,
but modifying some of the tuples in the results arbitrarily. The adversary may
respond to a PIR request with a corrupted query result or even desist from
acting on the request. Nevertheless, all of these active attack scenarios can be
effectively mitigated with a byzantine-robust multi-server PIR scheme.

4.2 Data size assumptions

We service PIR requests using indexed data extracted from relational databases.
The size of these data depends on the number of tuples resulting from the desen-
sitized query. We note that even in the event that this desensitized query yields
a small number of tuples (including just one), the privacy of the sensitive part
of the SQL query is not compromised. The properties of PIR ensure that the
adversary gains no information about the sensitive constants from observing the
PIR protocol, over what he already knew by observing the desensitized query.

On the other hand, many database schemas are designed in a way that a
number of relations will contain very few rows of data, all of which are meant
to be retrieved and used by every user. Therefore, it is pointless to perform PIR
operations on these items, since every user is expected to retrieve them all at
some point. The adversary does not violate a user’s query privacy by observing
this public retrieval.

4.3 Avoiding server collusion

Information-theoretic PIR is generally more computationally efficient than com-
putational PIR, but requires that the servers not collude if privacy is to be pre-
served; this is the same assumption commonly made in other privacy-preserving
technologies, such as mix networks [7] and Tor [12]. We present scenarios in
which collusion among servers is unlikely, yielding an opportunity to use the
more efficient information-theoretic PIR.

The first scenario is when several independent service providers host a copy
of the database. This applies to naturally distributed databases, such as Internet
domain registries. In this particular instance, the problem of colluding servers
is mitigated by practical business concerns. Realistically, the Internet domain
database is maintained by different geographically dispersed organizations that
are independent of the registrars that a user may query. However, different reg-
istrars would be responsible for the content’s distribution to end users as well as
integration of partners through banner ads and promotions. Since the registrars
are operating in the same line of business where they compete to win users and



deliver domain registry services, as well as having their own advertising models
to reap economic benefits, there is no real incentive to collude in order to break
the privacy of any user. In this model, it is feasible that a user would perform
a domain name registration query on multiple registrars’ servers concurrently.
The user would then combine the results, without fear of the queries revealing
its content. Additionally, individual service agreements can foreclose any chance
of collusion with a third party on legal grounds. Users then enjoy greater confi-
dence in using the service, and the registrars in turn can capitalize on revenue
generation opportunities such as pay-per-use subscriptions and revenue-sharing
ad opportunities.

The second scenario that offers less danger of collusion is when the query
needs to be private only for a short time. In this case, the user may be comfortable
with knowing that by the time the servers collude in order to learn her query,
the query’s privacy is no longer required.

Note that even in scenarios where collusion cannot be forestalled, our system
can still use any computational PIR protocol; recent such protocols [1, 31] offer
considerable efficiency improvements over previous work in the area.

5 Hiding Sensitive Constants

5.1 Overview

Our approach is to preserve the privacy of sensitive data within the WHERE and
HAVING predicates of an SQL query. For brevity, we will focus on the WHERE
clause; a similar processing procedure applies to the HAVING clause. This may
require the user (or application) to specify the constants that may be sensitive.
For the example query in Listing 2, the domain name and the creation date may
be sensitive.

Our approach splits the processing of SQL queries containing sensitive data
into two stages. In the first stage, the client computes a public subquery, which
is simply the original query that has been stripped of the predicate conditions
containing sensitive data. The client sends this subquery to the server, and the
server executes it to obtain a result for the subquery. The desired result for the
original query is contained within the subquery result, but the database is not
aware of the particular tuples that are of interest.

In the second stage, the client performs PIR operations to retrieve the tuples
of interest from the subquery result. To enable this, the database creates a cached
index on the subquery result and sends metadata for querying the index to the

Listing 2 Example query with a WHERE clause featuring sensitive constants.
SELECT t1.contact, t1.email, t2.created, t2.expiry

FROM registrar t1, regdomains t2

WHERE (t1.reg_id = t2.reg_id) AND (t2.created > 20090101) AND

(t2.domain = ’anydomain.com’)
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Fig. 1. A sequence diagram for evaluating Alice’s private SQL query using PIR.

client. The client subsequently performs PIR retrievals on the index and finally
combines the retrieved items to build the result for the original query.

The important benefits of this approach as compared with the previous ap-
proach [23] are the optimizations realizable from having the database execute the
non-private subquery, and the fewer number of PIR operations required to re-
trieve the data of interest. In addition, the PIR operations are performed against
a cached index which will usually be smaller than the complete database. This
is particularly true if there are joins and non-private conditions in the WHERE
clause that constrain the tuples in the query result. In particular, a single PIR
query is needed for point queries on hash table indices, while range queries on
B+ tree indices are performed on fewer data blocks. Figure 1 illustrates the
sequence of events during a query evaluation.

We note that often, the non-private subqueries will be common to many
users, and the database does not need to execute them every time a user makes
a request. Nevertheless, our algorithm details, presented next in Section 5.2,
show the steps for processing a subquery and generating indices. Such details
are useful in an ad hoc environment, where the shape of a query is unknown
to the database a priori; each user writes his or her own query as needed. Our
assumption is that revealing the shape of a query will not violate users’ privacy
(see Section 4).

5.2 Algorithm

We describe our algorithm with an example by assuming an information-theoretic
PIR setup with two replicated servers. We focus on hiding sensitive constants
in the predicates of the WHERE clause. The algorithm details for the SE-
LECT query in Listing 2 follows. We assume the date 20090101 and the domain
anydomain.com are private.

Step 1: The client builds an attribute list, a constraint list, and a desensitized
SELECT query, using the attribute names and the WHERE conditions of the
input query. We refer to the desensitized query as a subquery.



To begin, initialize the attribute list to the attribute names in the query’s SE-
LECT clause, the constraint list to be empty, and the subquery to the SELECT
and FROM clauses of the original query.

– Attribute list: {t1.contact, t1.email, t2.created, t2.expiry}
– Constraint list: {}
– Subquery: SELECT t1.contact, t1.email, t2.created, t2.expiry

FROM registrar t1, regdomains t2

Next, consider each WHERE condition in turn. If a condition features a
private constant, then add the attribute name to the attribute list (if not already
in the list), and add (attribute name, constant value, operator) to the constraint
list. Otherwise, add the condition to the subquery.

On completing the above steps, the attribute list, constraint list, and sub-
query with reduced conditions for the input query become:

– Att. list: {t1.contact, t1.email, t2.created, t2.expiry, t2.domain}
– Con. list: {(t2.created,20090101,>),(t2.domain,’anydomain.com’,=)}
– Subquery:

SELECT t1.contact,t1.email,t2.created,t2.expiry,t2.domain

FROM registrar t1, regdomains t2 WHERE (t1.reg id = t2.reg id)

Step 2: The client sends the subquery, a key attribute name, and an index file
type to each server.

The key attribute name is selected from the attribute names in the con-
straint list — t2.created, t2.domain in our example. The choice may either
be random, made by the application designer, or determined by a client opti-
mizer component with some domain knowledge that could enable it to make an
optimal choice. One way to make a good choice is to consider the selectivity —
the ratio of the number of distinct values taken to the total number of tuples —
expected for each constraint list attribute, and then choose the one that is most
selective. This ensures the selection of attributes with unique key values before
less selective attributes. For example, in a patent database, the patent number
is a better choice for a key than the author’s gender. A poor choice of key can
lead to more rounds of PIR queries than necessary. Point queries on a unique
key attribute can be completed with a single PIR query. Similarly, a good choice
of key will reduce the number of PIR queries for range queries. For the example
query, we choose t2.domain as the key attribute name.

For the index file type, either a PHF or a B+ tree index type is specified.
Other index structures may be possible, with additional investigation, but these
are the ones we currently support. More details on the selection of index types
is provided below.
Step 3: Each server: executes the subquery on its relational database, generates a
cached index of the specified type on the subquery result, using the key attribute
name, and returns metadata for searching the indices to the client.

The server computes the size of the subquery result. If it can send the entire
result more cheaply than performing PIR operations on it, it does so. Otherwise,



it proceeds with the index generation. For hash table indices, the server first com-
putes the perfect hash functions for the key attribute values. Then it evaluates
each key and inserts each tuple into a hash table. The metadata that is returned
to the client for hash-based indices consists of the PHF parameters, the count
of tuples in the hash table, and some PIR-specific initialization parameters.

For B+ tree indices, the server bulk inserts the subquery result into a new
B+ tree index file. B+ tree bulk insertion algorithms provide a high-speed tech-
nique for building a tree from existing data [2]. The server also returns metadata
to the client, including the size of the tree and its first data block (the root).
Generated indices are stored in a disk cache external to the database.

Step 4: The client receives the responses from the servers and verifies they are
of the appropriate length. For a byzantine robust multi-server PIR, a client may
choose to proceed in spite of errors resulting from non-responding servers or from
responses that are of inconsistent length.

Next, the client performs one or more keyword-based PIR queries, using the
value associated with the key attribute name from the constraint list, and builds
the desired query result from the data retrieved with PIR.

The encoding of a private constant in a PIR query proceeds as follows. For
PIR queries over a hash-based index, the client computes the hash for the private
constant using the PHF functions derived from the metadata1. This hash is also
the block number in the hash table index on the servers. This block number
is input to the PIR scheme to compute the PIR query for each server. For a
B+ tree index, the user compares the private value for the key attribute with
the values in the root of the tree. The root of the tree is extracted from the
metadata it receives from the server. Each key value in this root maintains block
numbers for the children blocks or nodes. The block number corresponding to
the appropriate child node will be the input to the PIR scheme.

For hash-based indices, a single PIR query is sufficient to retrieve the block
containing the data of interest from the hash table. For B+ tree indices, however,
the client uses PIR to traverse the tree. Each block can hold some number m

of keys, and at a block level, the B+ tree can be considered an m-ary tree. The
client has already been sent the root block of the tree, which contains the top m

keys. Using this information, the client can perform a single PIR block query to
fetch one of the m blocks so referenced. It repeats this process until it reaches
the leaves of the tree, at which point it fetches the required data with further
PIR queries. The actual number of PIR queries depends on the height of the
(balanced) tree, and the number of tuples in the result set. Traversals of B+ tree
indices with our approach are oblivious in that they leak no information about
nodes’ access pattern; we realize retrieval of a node’s data as a PIR operation
over the data set of all nodes in the tree. In other words, it does not matter which
particular branch of a B+ tree is the location for the next block to be retrieved.
We do not restrict PIR operations to the subset of blocks in the subtree rooted

1 Using the CMPH Library [5] for example, the client saves the PHF data from the
metadata into a file. It reopens this file and uses it to compute a hash by following
appropriate API call sequences.



at that branch. Instead, each PIR operation considers the set of blocks in the
entire B+ tree. Range queries that retrieve data from different subtrees leak no
information about to which subtree a particular piece of data belongs. The only
information the server learns is the number of blocks retrieved by such a query.
Therefore, specific implementations may utilize dummy queries to prevent the
server from leaning the amount of useful data retrieved by a query [24].

To compute the final query result, the client applies the other private con-
ditions in the constraint list to the result obtained with PIR. For the example
query, the client filters out all tuples with t2.created not greater than 20090101

from the tuple data returned with PIR. The remaining tuples give the final query
result.

Capabilities for dealing with complex queries can be built into the client. For
example, it may be more efficient to request a single index keyed on the con-
catenation of two attributes than separate indices. If the client requests separate
indices, it will subsequently perform PIR queries on each of those indices, using
the private value associated with each attribute from the constraint list. Finally,
the client combines the partial results obtained from the queries with set opera-
tions (union, intersection), and performs local filtering on the combined result,
using private constant values for any remaining conditions in the constraint list
to compute the final query result. The client thus needs query-optimization ca-
pabilities in addition to the regular query optimization performed by the server.

6 Implementation and Microbenchmarks

6.1 Implementation

We developed a prototype implementation of our algorithm to hide the sensi-
tive portions of SQL queries using generally available open source C++ libraries
and databases. We developed a command-line tool to act as the client, and a
server-side database adapter to provide the functions of a PIR server. For the
PIR functions, we used the Percy++ PIR Library [13, 14], which offers three va-
rieties of privacy protection: computational, information theoretic and hybrid (a
combination of both). We extended Percy++ to support keyword-based PIR. For
generating hash table indices for point queries, we used the C Minimal Perfect
Hash (CMPH) Library [5, 6], version 0.9. We used the API for CMPH to gener-
ate minimum perfect hash functions for large data sets from query results; these
perfect hash functions require small amounts of disk storage per key. For build-
ing B+ tree indices for range queries on large data sets, we used the Transparent
Parallel I/O Environment (TPIE) Library [11, 30]. Finally, we base the imple-
mentation on the MySQL [28] relational database, version 5.1.37-1ubuntu5.1.

6.2 Experimental setup

We began evaluating our prototype implementation using a set of six whois-
style queries from Reardon et al. [23], which is the most appropriate existing



microbenchmark for our approach. We explored tests using industry-standard
database benchmarks, such as the Transaction Processing Performance Coun-
cil (TPC) [29] benchmarks, and open-source benchmarking kits such as Open
Source Development Labs Database Test Suite (OSDL DTS) [32], but none of
the tests from these benchmarks is suitable for evaluating our prototype, as their
test databases cannot be readily fitted into a scenario that would make applying
PIR meaningful. For example, a database schema that is based on completing
online orders will only serve very limited purpose to our goal of protecting the
privacy of sensitive information within a query.

We ran the microbenchmark tests using two whois-style data sets, similar
to those generated for the evaluation of TransPIR [23]. The smaller data set
consists of 106 domain name registration tuples, and 0.75 × 106 registrar and
registrant contact information tuples. The second data set similarly consists of
4 × 106 and 3 × 106 tuples respectively. We describe the two database relations
and the evaluation queries, as well as the results for the smaller data set, in the
extended version [22].

In addition to the microbenchmarks, we performed an experiment to eval-
uate the behaviour of our prototype on complex input queries, such as aggre-
gate queries, BETWEEN and LIKE queries, and queries with multiple WHERE
clause conditions and joins. Each of these complex queries has varying privacy
requirements for its sensitive constants.

We ran the all experiments on a server with two quad-core 2.50 GHz Intel
Xeon E5420 CPUs, 8 GB RAM, and running Ubuntu Linux 9.10. We used the
information-theoretic PIR support of Percy++, with two database replicas. The
server also runs a local installation of a MySQL database.

6.3 Result overview

The results from our evaluation indicate that while our current prototype incurs
some storage and computational costs over non-private queries, the costs seem
entirely acceptable for the added privacy benefit (see Tables 1 and 2). In addition
to being able to deal with complex queries and leverage database optimization
opportunities, our prototype performs much better than the TransPIR prototype
from Reardon et al. [23] — between 7 and 480 times faster for equivalent data
sets. The most indicative factor of performance improvements with our prototype
is the reduction in the number of PIR queries in most cases. Other factors
that may affect the validity of the result, such as variations in implementation
libraries, are assumed to have negligible impact on performance. Our work is
based on the same PIR library as that of [23]. Our comparison is based on the
measurements we took by compiling and running the code for TransPIR on the
same experimental hardware platform as our prototype. We also used the same
underlying PIR library as TransPIR.



Table 1. Experimental results for microbenchmark tests compared with those of Rear-
don et al. [23]. BTREE = timing for our B

+ tree prototype, HASH = timing for our
hash table prototype, and TransPIR = timing from TransPIR [23]; Time = time to
evaluate private query, PIRs = number of PIR operations performed, Tuples = count
of rows in query result, QI = timing for subquery execution and index generation, Xfer
= total data transfer between the client and the two PIR servers.

Query Approach Time (s) PIRs Tuples QI (s) Xfer (KB)

Q1 HASH 2 1 1 16 128
BTREE 4 3 1 38 384
TransPIR 25 2 1 1,017 256

Q2 BTREE 5 4 80 32 512
TransPIR 999 83 80 1,017 10,624

Q3 BTREE 5 4 168 32 512
TransPIR 2,055 171 168 1,017 21,888

Q4 BTREE 6 5 236 37 640
TransPIR 2,885 240 236 1,017 30,720

Q5 BTREE 5 3 1 67 384
TransPIR 37 3 1 1,017 384

Q6† BTREE 5 4 168 66 512

TransPIR 3,087 253 127 —† 32,384

6.4 Microbenchmark and complex query experiments

For the benchmark tests, we obtained measurements for the time to execute the
private query, the number of PIR queries performed, the number of tuples in the
query results, the time to execute the subquery and generate the cached index,
and the total data transfer between the client and the two PIR servers.

Table 1 shows the results of the experiment. The cost of indexing (QI) can be
amortized over multiple queries. The indexing measurements for BTREE (and
HASH) consist of the time spent retrieving data from the database (subquery
execution), writing the data (subquery result) to a file and building an index
from this file. Since TransPIR is not integrated with any relational database,
it does not incur the same database retrieval and file writing costs. However,
TransPIR incurs a one-time preprocessing cost (QI) which prepares the database
for subsequent query runs. Comparing this cost to its indexing counterpart with
our BTREE and HASH prototypes shows that our methods are over an order of
magnitude faster.

For the experiment on queries with complex conditions, we used a number
of synthetic query scenarios having different requirements for privacy (see [22]
for details). The measurements, as reported in Table 2, show execution duration
for the original query without privacy provision over the MySQL database, and
several other measurements taken from within our prototype using a B+ tree
index.

† We reproduced TransPIR’s measurements from [23] for query Q6 because we could
not get TransPIR to run Q6 due to program errors. The ‘—’ under QI indicates
measurements missing from [23]



6.5 Discussion

The empirical results for the benchmark tests reflect the benefit of our approach.
For all of the tests, we mostly base our comparison on the timings for query
evaluation with PIR (Time), and sometimes on the index generation timings
(QI). The time to transfer data between the client and the servers is directly
proportional to the amount of data (Xfer), but we will not use it for comparison
purposes because the test queries were not run over a network.

Our hash index (HASH) prototype performs the best for query Q1, followed
by our B+ tree (BTREE) prototype. The query of Q1 is a point query having a
single condition on the domain name attribute.

Query Q2 is a point query on the expiry date attribute, with the query
result expected to have multiple tuples. The number of PIR queries required to
evaluate Q2 with BTREE is 5% of the number required by TransPIR. A similar
trend is repeated for Q3, Q4 and Q6. Note that the HASH prototype could not
be used for Q2 because hash indices accept unique keys only; it can only return
a single tuple in its query result.

Query Q3 is a range query on expiry date. Our BTREE prototype was
approximately 411 times faster than TransPIR. Of note is the large number of
PIR queries that TransPIR needs to evaluate the query; our BTREE prototype
requires only 2% of that number. We observed a similar trend for Q4, where
BTREE was 480 times faster. This query features two conditions in the SQL
WHERE clause. The combined measured time for BTREE — the time taken to
both build an index to support the query and to run the query itself — is still
67 times faster than the time it takes TransPIR to execute the query alone.

Query Q5 is a point query with a single join. It took BTREE only about
14% of the time it took TransPIR. We observed the time our BTREE spent in
executing the subquery to dominate; only a small fraction of the time is spent
building the B+ tree index.

Our BTREE prototype similarly performs faster for Q6, with an order of
magnitude similar to Q2, Q3, and Q4.

In all of the benchmark queries, the proposed approach performs better
than TransPIR because it leverages database optimization opportunities, such
as for the processing of subqueries. In contrast, TransPIR assumes a type of
block-serving database that cannot give any optimization opportunity. There-
fore, in our system, the client is relieved from having to perform many traditional
database functions, such as query processing, in addition to its regular PIR client
functions.

Results for queries with complex conditions. We see from Table 2 that in most
cases, the cost to evaluate the subquery and create the index dominates the total
time to privately evaluate the query (BTREE), while the time to evaluate the
query on the already-built index (Time) is minor. An exception is CQ2, which
has a relatively small subquery result (rTuples), while having to do dozens of
(consequently smaller) PIR operations to return thousands of results to the
overall range query. Note that in all but CQ2, the time to privately evaluate the
query on the already-built index is at most a few seconds longer than performing



Table 2. Measurements taken from executing five complex SQL queries with varying
requirements for privacy. oQm = timing for executing original query directly against
the database, BTREE = overall timing for meeting privacy requirements with our
B

+ tree prototype, Time = time to evaluate private query within BTREE, PIRs
= number of PIR operations performed, Tuples = number of records in final query
result, rTuples = number of indexed records in subquery result, Xfer = total data
transfer between the client and the two PIR servers, Size = storage for index.

Query oQm BTREE Time PIRs Tuples rTuples Xfer Size

(s) (s) (s) (KB) (MB)

CQ1 2 31 2 3 1 1,753,144 384 579.63

CQ2 1 15 13 41 3,716 72,568 5,248 25.13

CQ3 0 80 3 3 1 631,806 384 209.38

CQ4 2 25 5 3 1 1,050,300 384 348.63

CQ5 2 69 3 3 6 4,000,000 384 1,324.13

the query with no privacy at all; this underscores the advantage of using cached
indices.

We note from our results that it is much more costly to have the client simply
download the cached indices. We observe, for example, that it will take about 5
times as long, for a user with 10 Mbps download bandwidth, to download the
index for CQ5. Moreover, this trivial download of data is impractical for devices
with low bandwidth and storage (e.g., mobile devices).

One way to improve query performance is by revealing a prefix or suffix of
the sensitive keyword in a query. Revealing a substring of a keyword helps to
constrain the result set that will be indexed and retrieved with PIR. Making
this trade-off decision in a privacy-friendly manner necessarily requires some
knowledge of the data distribution in terms of the number of tuples there are for
each value in the domain of values for a sensitive constant. These information
can be included in the metadata a server sends to the client and the client can
make this trade-off decision on behalf of the user based on the user’s preset
preferences. We are considering this extension as part of our future work.

6.6 Limitations

Our approach can preserve the privacy of sensitive data within the WHERE and
HAVING clauses of an SQL query, with the exception of complex LIKE query
expressions, negated conditions with sensitive constants, and SELECT nested
queries within a WHERE clause. The complexity of complex search strings for
LIKE queries, such as (LIKE ’do%abs%.c%m’), and negated WHERE clause
conditions, such as (NOT registrant = 45444) are beyond the current capabil-
ity of keyword-based PIR. Our solution to dealing with these conditions in a
privacy-friendly manner is to compute them on the client, after the data for the
computation has been retrieved with PIR; converting NOT = queries into their
equivalent range queries is generally less efficient than our proposed client-based
evaluation method. In addition, our prototype cannot process a nested query
within a WHERE clause. We propose that the same processing described for



a general SQL query be recursively applied for nested queries in the WHERE
clause. The result obtained from a nested query will become an input to the client
optimizer, for recursively computing the enclosing query for the next round.
There is need for further investigation of the approach for nested queries return-
ing large result sets and for deeply nested queries.

7 Conclusion and Future Work

We have provided a privacy mechanism that leverages private information re-
trieval to preserve the privacy of sensitive constants in an SQL query. We de-
scribed techniques to hide sensitive constants found in the WHERE clause of an
SQL query, and to retrieve data from hash table and B+ tree indices using a pri-
vate information retrieval scheme. We developed a prototype privacy mechanism
for our approach offering practical keyword-based PIR and enabled a practical
transition from bit- and block-based PIR to SQL-enabled PIR. We evaluated
the feasibility of our approach with experiments. The results of the experiments
indicate our approach incurs reasonable performance and storage demands, con-
sidering the added advantage of being able to perform private SQL queries. We
hope that our work will provide valuable insight on how to preserve the privacy
of sensitive information for many existing and future database applications.

Future work can improve on some limitations of our prototype, such as the
processing of nested queries and enhancing the client to use statistical informa-
tion on the data distribution to enhance privacy. The same technique proposed
in this paper can be extended to preserve the privacy of sensitive information
for other query systems, such as URL query, XQuery, SPARQL and LINQ.
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