CS 798
Privacy in Computation and Communication

Module 3
Privacy in Computation: Distributed Trust

Fall 2025

Distributed trust

Recall the three main ways to achieve privacy in computation:
® Distributed trust
® Trusted hardware

® Homomorphic encryption

3-2

Distributed trust

Recall the three main ways to achieve privacy in computation:
® Distributed trust
® Trusted hardware

® Homomorphic encryption

3-3

MPC: multiparty computation

® The main way to use distributed trust to achieve privacy in
computation is by using MPC (multiparty computation)

e Sometimes called SMC (secure multiparty computation)

34

MPC: multiparty computation

Alice, Bob, and
Carol want to
compute some
function f(a, b, ¢)

™~

-
(‘b

3-5

gbo

[2 NS

&1' 9]
Ca

MPC: multiparty computation

@ o

A few servers help
many clients
compute over their
private inputs

3-6

MPC: multiparty computation

abcde
AW,-. e
DO

a, b2, 02, dp, &
A few servers help
many clients
compute over their
private inputs

~ ™~

aOJb()aCOadanO aloblacladlael

3-7

Properties of MPC protocols

Expressibility

Minimum number of parties

Threat model

Maximum number of adversarial parties

Performance

3-8

Expressibility

What functions f can the MPC protocol compute privately?

Some protocols are generic: they can compute any function that
has bounded runtime

Some are specific: they are designed to (more efficiently) compute
one particular function

In this module, we will start with generic protocols, and later look
at a few specific ones

3-9

Generic protocols

® As discussed in Module 1, the high-level approach is to express
your function as a circuit of Boolean or arithmetic gates

e Some protocols come with a compiler that will take your function
written in some reasonable language, and automatically generate
the circuit for you

e Recall that circuits are oblivious: they always perform the same
actions, regardless of the input, since the parties executing the
circuit cannot know the input

® So the compiler must compile any if/then/else statements into circuits
that compute both the “then” and “else” parts, and use the “if" test to
select which results to keep and which to discard

3-10

Generic protocols

o — L
- Ll
Y1 |—

® The clients (with the inputs) secret share their inputs across all
the (computational) parties (party 1 shown above)

Generic protocols

*

L
X1 —)
1 _J_ L Z_{y if b=0

, T)x ifb=1
1
l_

® For each gate in turn, the parties jointly evaluate the gate

e Each party has a share of the inputs to the gate; each party must
compute a share of the output of the gate without learning the
true inputs or output

3-12

Generic protocols

*
L

X] — .
J Ll Z_{y if b=20

, T)x ifb=1
1
l_

e All of the secret sharing schemes (additive, XOR, Shamir,
replicated) we talked about are linear

® That means if xq, ..., X, are shares of a value x and yy,...,y, are
shares of a value y, then (x; +y1),..., (x,+y,) are shares of x+y

3-13

Generic protocols

L
X1 —

RiB L Z_{y if b=0

X1—n x ifb=1

n |—

e Linear gates (&, +, —, multiplication by a public value) are then
easy:

® Each party just locally computes the gate on its shares of the
inputs to get its share of the output

3-14

Generic protocols

e
X1 —

RiB L Z_{y if b=0

1= x ifb=1

1 |—

e Non-linear gates (A, V, %) are more complicated, and require the
parties to interact for each such gate

® The details vary with each protocol; we'll look at some examples
later on

3-15

Generic protocols

e
X1 —

J 4+ bz = Z_{y Ifb:O

1 |—
e Non-linear gates (A, V, %) are more complicated, and require the
parties to interact for each such gate

® The details vary with each protocol; we'll look at some examples
later on

3-16

Minimum number of parties

e How many parties do you need to run this protocol?
® Count the parties participating in the computation, not clients that just
submit input values
® (Enough of) these parties must not collude to reconstruct the private
inputs!
® Distributed trust: you have to trust that some of the parties are behaving
properly, but you don't need to know which ones

e 2 3 4 are common values
e Often written 2-PC, 3-PC, 4-PC

® The larger this value, the more challenging it will be to deploy the
protocol

® You need to find that many parties who will collaborate to execute the
protocol, but not collude to break it

3-17

Threat model

® As discussed earlier, some of the parties may be untrustworthy /
adversarial

® Does the protocol remain secure if some of the parties collude, but
otherwise follow the protocol?
® |t typically cannot remain secure if all parties collude, since then there's
effectively just one party, and there's no distributed trust

® Does it remain secure if some of the parties deviate from the
protocol?
® Both: does the adversary learn the private inputs, but also can the
adversary crash the protocol and cause it not to output the correct answer
(or not output anything at all)?
® Producing the correct answer even when some parties misbehave is called
robustness 318

Maximum number of adversarial parties

e How many parties in the protocol can be adversarial and still have
the protocol be secure?

e Weakest form: just one; if even two parties collude, they can learn
the private inputs

e Strongest form: all but one; if even one party is honest, the
private inputs are safe
® But: it's not generally possible to make such systems robust, so there's a
tradeoff

3-19

Maximum number of adversarial parties

® There are two broad classes of protocols:

® Honest majority:
® The number of adversarial parties is strictly smaller than the number of
honest parties

® Example: 3-PC where one party can be adversarial, or 5-PC where two
parties can be adversarial

® Honest minority:

® As few as one party needs to be honest
® But as above, you generally lose robustness in that case

3-20

Performance

e Different MPC protocols have different performance characteristics

® |mportant things to measure:

® |ocal computation at each party
® Total amount of communication by each party
® Number of latencies / sequential messages of communication

e Which is most important?
® Depends on the deployment scenario

3-21

MPC deployment scenarios

Recall the MPC parties cannot collude

Imagine all the parties had their machines in a single cloud
datacentre (e.g., Amazon)

Then you're trusting Amazon itself not to “peek inside” the
running machines to see the shares of the clients’ inputs

If you're willing to do that, why not just have Amazon run one
single machine to do the computation without any privacy, and
just trust Amazon that it won't look inside?

3-22

MPC deployment scenarios

e So for MPC, you need to have machines actually controlled by the
different parties

® You could have different parties bring their computers all to one
place and hook them up together
® Where no one else has access to the machines
® This is of course inconvenient and probably unlikely

e But if you can, then you get very fast inter-party communication
(tens to hundreds of Gbps) and very low inter-party latencies (tens
to hundreds of microseconds)

® |n that case, the bandwidth and number of latencies don't matter very
much, and the amount of local computation will dominate
3-23

MPC deployment scenarios

® The alternative is that the parties’ machines are communicating
over the Internet

® Probably at best ~1 Gbps, tens of milliseconds latency

® The number of latencies becomes the bottleneck
® You can do a /ot of computation in the time it takes to receive a message
from another party

e Also note that it's way easier to deploy machines with more
computing power (cores, etc.) than it is to increase your
bandwidth or decrease your latency to the other parties

3-24

Non-linear gates

e We saw earlier that /inear gates are very easy to evaluate
® Only some (very simple) local computation, no communication at all

e How do non-linear gates work?

® |t depends on the details of the MPC protocol, and in particular which
secret sharing technique is used

e We'll look next at how to compute a multiplication gate, using

three different kinds of secret sharing
® Additive, Shamir, replicated

3-25

Multiplication gate

® The general setup is that each party / has shares x; and y; of the
inputs (x and y) to the multiplication gate, and they want to

perform some protocol so that each party / ends up with a share
z; of the product z = x-y.

X e

Yi —

3-26

Additive secret sharing

® Suppose we have two parties (2-PC) using additive secret sharing
®* Sox=x+xxandy=y;1+y

e We want party 1 to end up with z; and party 2 to end up with z
such that z1 + 2z = x-y = (x1 + x2)- ()1 + »2)

® Without revealing x, y, or z to either party!

® The key trick: Beaver triples

3-27

Beaver triples

e Ahead of time, distribute shares of random inputs (a and b) and
output (c) of a multiplication gate to the parties
® So party 1 gets (ay, b1, c1) and party 2 gets (ao, b, ¢2), where
ai, by, c1, az, by are independent and random, and
o= (a1+ a) (b +b)—a

® ¢ is also then random (as we saw before), but not independent
® These random triples do not depend on the clients’ inputs

® You will need to distribute one Beaver triple in advance for every
multiplication gate in the circuit you will want to compute on the

clients’ inputs
3-28

Beaver triples

® The two parties use a and b to blind x and y respectively
® FEach party sends their share of @« = x + a and = y + b to the other
party (so both parties can reconstruct « and 3)
® Since a and b are random, learning o = x + a tells you nothing about x,
and similarly for y

e Party 1 computes z; = ay; — far + ¢,
Party 2 computes z = ay, — Bar + &

z1+ 2 :Oé(y1+y2)—5(31+32)+(C1+C2)
:a.y_5.3+c
=(x+ay—(y+ba+c
= Xy + ay — ay — ab+ ¢ = xy (since ¢ = ab)

3-29

Preprocessing

This protocol is an example of a protocol with a preprocessing
phase

Some amount of work is done in advance, before the clients show
up with their inputs

This can reduce the amount of time it takes to process the clients’
inputs once they show up (the latency)

The preprocessing phase is sometimes called the offline phase, but
that's a bad name
® The parties definitely have to be online during this phase
3-30

Preprocessing
Where do these Beaver triples come from?
A couple of options:

The two parties run an MPC protocol to jointly create them

Have a third party with a limited role:

® Only active during the preprocessing phase

® Just sends a bunch of these random triples to the two parties (in a single
latency), and then exits (nothing is ever sent to this party)

® This is sometimes called “2+1-PC" meaning it's 2-PC plus this one more
party with the very limited role

3-31

Properties of this protocol
Expressibility: generic
Minimum number of parties: 2 (4 1 preprocessing only)
Threat model: semi-honest

Maximum number of adversarial parties: 1

Performance (g total gates, m mult gates, mult depth d):
® Local computation: O(g)
® Total communication: 6m preproc + 2m per party
® |atencies: 1 preproc + d

3-32

Shamir secret sharing
e With Shamir secret sharing, there are n parties, and any t of them

can reconstruct the private data
® So at most t — 1 can be adversarial

® Recall: shares of a value are points on a degree t — 1 polynomial
whose y-intercept is the value

3-33

Shamir secret sharing
e With Shamir secret sharing, there are n parties, and any t of them

can reconstruct the private data
® So at most t — 1 can be adversarial

® Recall: shares of a value are points on a degree t — 1 polynomial
whose y-intercept is the value

3-34

Degree reduction

e |f each party i locally multiplies their x; and y; to get w;, then the
w; do lie on a polynomial whose intercept is in fact x-y

® But the degree of that polynomial is 2t — 2 instead of t — 1
e |f we were to reconstruct the value from the w; shares, how would

we do it?
= Lagrange interpolation: w = A\ywy + Aows + - - - + A, w,

e So we want to privately compute w from the n private inputs
wi, ..., w, (the \; are public, remember)

3-35

Degree reduction

® The key trick: we can use MPC for this!
® And since the Lagrange interpolation formula is linear, we don't have a
problem where in order to evaluate a multiplication gate, we need to
evaluate one or more multiplication gates

® So the multiplication gate protocol for Shamir secret sharing is:
® Each party / locally multiplies x;-y; to get w;
® Each party i makes n shares w;1,...,w;, of w; with the correct t

and for each j, sends share w;; to party j
® Each party j locally combines the shares they received with Lagrange

interpolation to get zj = A\ywyj + dowsj + - - + AWy
® The z are now Shamir secret shares (with the correct t) of z = x-y

3-36

Degree reduction

® For this to work, we must have enough parties to be able to
reconstruct the intercept of the degree 2t — 2 polynomial

® So n>2t—1, and recall there are at most t — 1 adversarial parties

= Honest majority setting

® | ook what we did here:

® \We evaluated the reconstruction function using the private computation
mechanism itself in order to get a “clean” sharing of a value

® We will see this technique again later in the course

3-37

Properties of this protocol
Expressibility: generic
Minimum number of parties: 2t — 1
Threat model: semi-honest

Maximum number of adversarial parties: t — 1

Performance (g total gates, m mult gates, mult depth d):
® Local computation: O(g + ntm)
® Total communication: (n — 1)m per party
® Latencies: d

3-38

Replicated secret sharing

® Recall how replicated secret sharing works
(simple example: n =3, t = 2)

Each value is additively shared into 3 pieces, each party gets 2 of them

®* X=Xx1t+X+tX3, y=y1t+ty2t+y

Party 1 gets: (x1, x2), (y1,2)

Party 2 gets: (x2,x3), (v2,¥3)

Party 3 gets: (x3, x1), (v3,y1)

3-39

Replicated secret sharing

® Recall how replicated secret sharing works
(simple example: n =3, t = 2)

® Each value is additively shared into 3 pieces, each party gets 2 of them
S xX=x1t+tX2+tX3, Y=WV1+tY+yz,want z; + 2o +z3 = Xy

® Party 1 gets: (x1,%), (y1,¥2), wants (z, z)

Party 2 gets: (x2, x3), (¥2,y3), wants (2, z3)

Party 3 gets: (x3,x1), (y3,y1), wants (z3, 1)

3-40

Replicated secret sharing
e First attempt (not quite good enough):
e Want z;, 2, z3 such that

zZi+nt+z=xy=x+x+x3)+y +)
= X1y1 + X1y2 + Xoy1
T Xo)2 1+ X2¥3 + X3Y2
+ X3Y3 + X1y3 + X3)1

3-41

Replicated secret sharing
e First attempt (not quite good enough):
e Want z;, 2, z3 such that

n+zntz=xy=x+x+x3)y+y+y)
= X1y1 + X1y2 + Xoy1 < party 1 can compute this
+ Xoyo + Xo¥3 + X3)2
+ X3y3 + X1y3 + X311

3-42

Replicated secret sharing
e First attempt (not quite good enough):
e Want z;, 2, z3 such that

Z1+2+z3=Xy = (X1 + X —I—X3)(y1 + y» —|—y3)
= x1y1 + X1¥» + Xoy1 < party 1 can compute this
+ Xo¥» + Xoy3 + X3y» < party 2 can compute this
+ X3y3 + x1y3 + x3y1 < party 3 can compute this

3-43

Replicated secret sharing
e First attempt (not quite good enough):
e Want z;, 2, z3 such that

zZitzn+tzn=xy=m0+x+x3)y+y+y)
= X1y1 + X1y2 + Xoy1 < Z1
T X2Y2 + Xo¥3 + X3Y2 < 22
T X3y3 T X1Y3 +X3y1 < 23

3-44

Replicated secret sharing

e First attempt (not quite good enough):
e Want z;, 2, z3 such that

zZitzn+tzn=xy=m0+x+x3)y+y+y)
= X1y1 + X1y2 + Xoy1 < Z1
T X2Y2 + Xo¥3 + X3Y2 < 22
T X3y3 T X1Y3 +X3y1 < 23

® Then party 1 sends z; to party 3, party 2 sends z to party 1,
party 3 sends z3 to party 2

3-45

Replicated secret sharing

e First attempt (not quite good enough):
e Want z;, 2, z3 such that

zZitzn+tzn=xy=m0+x+x3)y+y+y)
= X1y1 + X1y2 + Xoy1 < Z1
T X2Y2 + Xo¥3 + X3Y2 < 22
T X3y3 T X1Y3 +X3y1 < 23

e Problem: Party 3 (for example) is supposed to learn z; but already
knows x; and yi, and so can learn information about x, and y»

3-46

® The

Zero sharing

key trick: non-interactive zero sharing
The parties can, without communication, come up with random a;, a;,

ag such that a; + ap + a3 =0
Use those a; to blind the values on the previous slide to prevent the

information leakage:

Party 1 computes z; = x1y1 + x1)2 + Xoy1 +
Party 2 computes z, = x2)> + xoy3 + X3y2 + an
Party 3 computes z3 = x3y3 + x1y3 + x3y1 + a3

Then party 1 sends z; to party 3, party 2 sends z, to party 1, party 3
sends z3 to party 2

3-47

Zero sharing

So how do the parties make these «o; values?

Remember PRGs: given a key as input, produce an
arbitrary-length sequence of random-looking outputs

Ahead of time, each party i/ picks a random PRG key k;

® Party 1 sends k; to party 3, party 2 sends k; to party 1, party 3 sends k3
to party 2

When the parties want new «; values, they compute r; as the next
output of PRG(k;)

® Party 1 knows (r1, i), computes oy = rp —

® Party 2 knows (r, r3), computes o, = r, — r3

® Party 3 knows (r3, 1), computes az = r3 — ry

3-48

Properties of this protocol
Expressibility: generic
Minimum number of parties: 3
Threat model: semi-honest

Maximum number of adversarial parties: 1

Performance (g total gates, m mult gates, mult depth d):
® Local computation: O(g)
® Total communication: 3 preproc + m per party
® |atencies: 1 preproc + d

3-49

Protocols for specific functions

® We next turn our attention to MPC protocols for specific (not
generic) functions

® These can often be implemented more efficiently than by
implementing the function using generic MPC

e We will look at a few such MPC protocols for specific functions

® Private information retrieval
® Private set intersection
® Threshold signatures

3-50

Private information retrieval

® You want to look
something up in an online
database
® For example, a database of
patents

® You want to keep private
the information being
retrieved
® For example, the patent
number (6368227) you're
looking up

3-51

Private information retrieval

a United States Patent (o) Patent No: US 6,368,227 B1
Olson @5) Date of Pa Apr. 9, 2002

® You want to look
something up in an online
database
® For example, a database of
patents

2808

® You want to keep private
the information being
retrieved
® For example, the patent
number (6368227) you're
looking up

3-52

Private information retrieval

e Other uses include:
® |ooking up whether a password is in a list of breached credentials
(without revealing the password)
® Looking up whether a URL is in a list of malicious websites (without
revealing the URL)

e This is called private information retrieval (PIR)

® Simplest form: you know the exact record number you want to look up
(e.g., patent number)

® But can also do more advanced queries, such as query by (private)
keyword, or even SQL queries (where the prepared statement is public,
but the parameters are private)

3-53

General setup

e A server holds a database D consisting of (equal-sized, padded if
necessary) records

® Say there are r records, each of size s

e A client has a query g
® A record number, or a keyword, for example

® Desired outcome: client learns the record corresponding to g,
server learns nothing about g

® |t's usually OK if the client happens to learn more information about D as
well, but sometimes not

3-54

A trivial solution

Here is a trivial protocol to achieve this:

Client sends to server: “l would like to make a query”
Server sends to client: the whole database D

Client looks up the information in the database themselves

Pro: very simple (“trivial™)
Con: communication the size of D (which is r-s)

3-55

Communicating less data

o \We want “true” PIR solutions to communicate less data than the
whole database, while still not revealing anything about the query

® Asking for just half of the database, for example, reveals that the query
was in that half, so that's no good

® You can take any of our three private computation approaches to
solve this problem:

® Distributed trust
® Trusted hardware
® Homomorphic encryption

e \We'll look at the distributed trust solution now

3-56

Multi-server PIR

In the (simplest version of the) distributed trust setting, there are
multiple servers, each with a copy of the database D

The client secret shares the query g and sends one share to each
server

Each server processes its share of g to produce a share of the
desired response, which it returns to the client

The client combines the response shares to get the complete
response

3-57

e If you write your query like this: ¢g=[000100 |

then what is g - D?

The database as a matrix

® Most PIR protocols will model the database D as a matrix

® For example, a matrix with r rows, each of length s bytes
® The it" row of the matrix is the it" record of the database

Sealing assembly for ... |

Adjustable-backset . ..
Conical recreational ...
Method of swinging ...
Cover for the rails . ..
Golf ball delivery ...

3-58

A simple PIR protocol

A very simple PIR protocol (from the original PIR paper due to
Chor et al.):

n servers each have a copy of D

The client writes their query g as e; (a vector of all Os except a 1
in position /)

The client XOR-shares g into n shares to get g1, ..., g, where
g1 @~ D gn=q, sends q; to server j foreach j =1,...,n

3-59

A simple PIR protocol

Server j computes its answer a; = q; - D

® g; will be a vector of length r of random bits (0 or 1)
® a; = q;- D is just saying “for each index i where the /™" entry of g; is 1,
XOR those records of D together to get a;”

Server j sends a; back to the client

The client computesa=a; ®--- D a,

How much data is transmitted?

® g; has length r bits, a; has length s bytes, there are n servers, so the
client sends nr bits and receives ns bytes
® n[g] + nsis (likely) a Jot smaller than rs (the size of the whole database)

3-60

Properties of this protocol
Expressibility: (index) PIR
Minimum number of parties: 2 servers
Threat model: semi-honest

Maximum number of adversarial parties: n — 1

Performance (r records of size s):
® Local computation: O(n(r + s)) client, O(rs) per server
® Total communication: n([g] + s)
® Latencies: 2

3-61

Extensions

® There are many ways to extend and improve this simple PIR
protocol

e Some examples:

® Batching (reducing computation)
® Threat model

® Robustness

® Reducing communication

3-62

Reducing computation with batching

® To answer a query, the servers have to do some computation over
the entire database

® |f they ignore some record, then that record was definitely not the query

e But it turns out to answer /ots of queries (say m) at the same
time, the servers can do o(mrs) work
® We assume m is much smaller than r and s

® Two cases:

® A single client making lots of queries
® | ots of clients making one query each

3-63

Batch codes

In the first case, you have a single client who wants to look up a
lot of queries at the same time

We won't go into the details here, but one technique is batch
codes

Rather than encoding the queries as g =[000 10 0] for
example, the client uses better encodings

In one variant, for example, the servers only have to do
O(m®*%rs) work
® But the response size is much larger, at m?s (instead of ms)

3-64

Independent clients

e Batch codes only work if a single client can encode lots of queries
in a clever manner

e |f you have lots of independent clients, they're each going to
submit their query as if they were the only one

e But the server can still save computation!

3-65

Independent clients
® Recall that each server j is computing a; = q; - D
e |f m queries qj(l), e q}m) come in at the same time, stack them

into a matrix Q;
® Each row of Q; is one of the queries

) o
q.
N -

Q= U

qj()

3-66

Independent clients
® Recall that each server j is computing a; = q; - D

e |f m queries qj(l), e q}m) come in at the same time, stack them

into a matrix Q;
® Each row of Q; is one of the queries
_ . _
o —
- q(2) -
QD= j .D

qj()

3-67

Independent clients
® Recall that each server j is computing a; = q; - D

e |f m queries qj(l), e q}m) come in at the same time, stack them
into a matrix Q;

® Each row of Q; is one of the queries

— ¢’ — — 4
N .
QD= 9 D= i
 m _ (m
| 9 | ! 9 |

3-68

Independent clients

It takes O(rs) work to multiply a 1 x r vector by an r x s matrix

But you can multiply an m X r matrix by an r X s matrix in less
than m times that cost

O(m®8lrs) is easy, lower numbers are theoretically possible

Also: no expansion of response size

3-69

Threat model and robustness

® The presented protocol used XOR sharing

e Excellent resistance to collusion (up to n — 1), but the protocol
completely fails if even one server refuses to answer, or
(intentionally) gives an incorrect response

® You

can fix this by using different secret sharing

e.g., t-of-n Shamir secret sharing

Then you can handle both servers that fail to respond and malicious
servers that give incorrect responses

But the resistance to collusion goes down to t — 1

3-70

Reducing communication

® Another way to improve this protocol is to reduce the amount of
communication

® Query size or response size or both
® Sometimes this increases the computation cost, so there's a tradeoff

® Recall the (non-private) query g=[000100 |

e One can consider g(i) (the /™" element of g) to be a “point
function”: a function that's 0 everywhere except in one position

® Since g is a bit vector, that position necessarily is a 1

3-71

Point functions

® A point function is a function that is non-zero at exactly one input:

o) = {O I # a

b i=a

e For a binary point function, the outputs are all either 0 or 1, so b
must be 1

e For a general point function, b can be any (non-zero) valid output

3-72

Distributed point functions

® An (n, t)-distributed point function (DPF) is a way to construct n
secret shares of a point function so that:

® Any t shares can be used to reconstruct the original point function p,

® Any t — 1 shares cannot be used to learn a or b (unless you know b =1
because it's a binary DPF)

e One way to do it we've already seen: write the point function as a
vector of its outputs ¢ =[000 1 0 0] and secret share that
vector

® But the problem we wanted to address is that, if there are r possible
inputs, this vector (and its shares) is of length r, which could be very large

3-73

(2,2)-DPFs

e We're going to look at the simplest case: (2,2)-DPFs

® There are two shares, and neither share alone can reveal a (or b if not
binary)

e APl: GEN(r, a, b) — (keyy, key1)
® Given the size of the set of possible inputs r, a target input a (with
0 < a < r) and a target output b, produce a pair of DPF keys. Send keyj
to server (3 for 5 € {0,1}
® Note: we will want the sizes of key, and key; to be smaller than r

e APl: EvAL(S, keys, i) — Vfg

® Server (3 uses keys to evaluate its share of the DPF at input /, yielding vé,
which should reveal nothing about a or b
3-74

(2,2)-DPFs
APl: GEN(r, a, b) — (keyy, keyr)
API: EVAL(S, keyg, i) — v,

Property: for each i, v} & vi = p, (i)
That is, for i # a, vj = v{, and for i = a, J® v{ = b

e How do we implement GEN and EVAL?
Strategy: visualize all possible inputs i to EVAL as a binary tree
® Note: you won't actually construct this binary tree at any point!

3-75

3-76

(2,2)-DPFs

3-77

(2,2)-DPFs

* keyo = (so = 5, cwi, cwa, cws)

e Each cwy = (scx, fC/?a fC/%)

3-78

DPF nodes
®

e Each node in the (again, notional) DPF tree has:

® A seed (typically around 128 bits)
® A flag bit (one bit)

e We will denote the seed for server 5 at the node with prefix a by
sOé
s

e We will denote the flag bit for a node by a thick outline if the flag
bit is 1, and a thin outline if it is 0

3-79

Children of DPF nodes
(%) ()

® To get the seeds and flag bits for the children of a given parent
node:

® Use the seed of the parent node as the input to a PRG. Treat the output
of the PRG as (left seed, left flag, right seed, right flag); these will all be
random values

3-80

Children of DPF nodes
(%) ()

CWy

() ® — G ()

® To get the seeds and flag bits for the children of a given parent
node:

® Use the seed of the parent node as the input to a PRG. Treat the output

of the PRG as (left seed, left flag, right seed, right flag); these will all be
random values

® If the parent’s flag bit is 1: XOR sc, into both children’s seeds, XOR
fc? into the left child’s flag bit, XOR fc} into the right child’s flag bit

3-81

Children of DPF nodes
(%) ()

(scx, feD, fe})

() ® — G ()

® To get the seeds and flag bits for the children of a given parent
node:

® Use the seed of the parent node as the input to a PRG. Treat the output

of the PRG as (left seed, left flag, right seed, right flag); these will all be
random values

® If the parent’s flag bit is 1: XOR sc, into both children’s seeds, XOR
fc? into the left child’s flag bit, XOR fc} into the right child’s flag bit

3-82

Children of DPF nodes
(%) ()

(scx, feD, fe})

(2 ® — @ ©

® To get the seeds and flag bits for the children of a given parent
node:

® Use the seed of the parent node as the input to a PRG. Treat the output
of the PRG as (left seed, left flag, right seed, right flag); these will all be
random values

* If the parent’s flag bit is 1: XOR sc, into both children’s seeds, XOR
fc? into the left child's flag bit, XOR fc} into the right child’s flag bit

® In this case, scx = PRG(s§)][left seed] & PRG(s5)[left seed],
fc) = PRG(s5)[left flag] & PRG(s{)[left flag],
fck = PRG(s§)[right flag] & PRG(sf)[right flag] & 1 3.83

The DPF trees

® |nvariant: each node on the path leading to the target index a has
a different seed and a different flag in the two trees; each node
not on this path has the same seed and flag in the two trees 384

The DPF trees

e For a binary DPF, we're done: look at the flag bits at the leaves;
they are identical except for the target index

e So EVAL(S, keyg, i) is just the flag bit at leaf / 285

The DPF trees

e And remember, when computing EVAL(f, keys, i), you only
compute the seeds and flags on the path from the root to /, and
not any others 286

The DPF trees

e For non-binary DPFs, two extra steps: first, hash the seed you end
up with into however large an output you need, then, if the flag
bit is 1, XOR that with a final correction word 267

Non-binary DPF trees

3-88

Properties of this protocol
Expressibility: (index) PIR
Minimum number of parties: 2 servers
Threat model: semi-honest

Maximum number of adversarial parties: 1

Performance (r records of size s):
® Local computation: O(s + Igr) client, O(rs) per server
® Total communication: [Assignment 2]
® Latencies: 2

3-89

Keyword PIR

Up to now, we have assumed that the client knows the exact
database index of the record they're looking for

® For something like patent numbers, where the number could itself just be
the index, that might be OK

But in general, a (keyword, value) store is much more useful

® Sometimes called a (key, value) store, but “key” of course already has a
different meaning in privacy / cryptography

The database is a collection of (keyword, value) pairs

The client has a keyword, and wants to look up the associated
value without revealing the keyword

® Or be told that no such value exists

3-90

Keyword PIR

® One technique is to put the values in an index-PIR database (as
before), and then have a separate mechanism (which could be
based on PIR accesses into a binary search tree, for example) to
look up the correct index for a given keyword

e This will require multiple communication rounds and additional
computation, however

e Using DPFs, we can achieve keyword PIR with almost the same
performance as index PIR

3-91

The two hashes

e For each (keyword, value) pair in the database, hash the keyword
in two ways:
® A regular hash; we'll use SHA2-256 with a 32-byte output
® A truncated hash which is the first d bits of the regular hash

® d is chosen so that no two keywords have the same truncated
hash
® |f the keywords in the database can be chosen adversarially, choose
d = 256 (i.e., use the whole hash, not truncated)
® Otherwise, choosing d = 2[lg r| (where r is the number of keywords in
the database) is typically fine

e Notation: for a keyword w, H(w) will be the full hash, Hy(w) will

be the hash truncated to the first d bits 20

One more notation

e For any (keyword, value) pair (w, v) in the database, let
V(w) = H(w)|[v

e Thatis, V(w) is (the 32-byte hash of the keyword) concatenated
with (the value)

e So if values are s bytes long, V(w) will be 32 4 s bytes long

3-93

Converting DPF-based index PIR to keyword PIR

Client Server (3

GEN(r,i,1) — (keyo, keyr)
\

ag = £ D[]
/ je{0,...,r—1}
EVAL(B,keys.j)=1

a = ag D a;

3-94

Converting DPF-based index PIR to keyword PIR

Client Server (3

GEN(27, Hy(w),1) — (keyp, key1)
\

ag = £ D[]
/ je{0,...,r—1}
EVAL(B,keys.j)=1

a = ag D a;

3-95

Converting DPF-based index PIR to keyword PIR

Client Server (3

GEN(29, Hy(w),1) — (keyo, keyr)
\

ag = . V(w)
/ w Ekeywords
EvAL(S,keyg, Ha(w))=1

a = ag D a;

3-96

Converting DPF-based index PIR to keyword PIR

Client Server (3

GEN(29, Hy(w),1) — (keyo, keyr)
\

ay = .~ V(w)
/ w Ekeywords
a = ay & o EVAL(S, keyg, Ha(w))=1
Check a starts with H(w)

3-97

Properties of this protocol
Expressibility: keyword PIR
Minimum number of parties: 2 servers
Threat model: semi-honest

Maximum number of adversarial parties: 1

Performance (r records of size s):
® Local computation: O(s + Igr) client, O(rs) per server
® Total communication: [Assignment 2]
® Latencies: 2

3-98

Private Set Intersection (PSI)

Another multiparty protocol to compute a specific function is
private set intersection (PSI)

In its simplest form, there are two parties, the receiver and the
sender

Each party has a set of elements
® Numbers, strings, IP addresses, whatever

The goal is for the receiver to learn which elements the two parties
have in common

® Both parties can learn (a bound on) the size of each other's sets

® The sender learns nothing else
3-99

Uses of PSI

® Google and Mastercard: what users bought something they saw in
a Google ad?

® Messaging apps: which of your friends are already users of this
app?

e Contact tracing: what places | have visited have had a reported
COVID exposure?

3-100

Variants

e PSI Cardinality

® The receiver only learns the number of items in common
® More generally, compute some function of the intersection

e Unbalanced PSI: the sender or receiver has a much larger set than
the other

® |arge sender set: messaging app example
® large receiver set: contact tracing example

® Private Set Union (Cardinality)

® Find the (number of) users a set of services have in total, without
double-counting people that use multiple services

3-101

Comparison of PIR and PSI

e If the receiver has only one element, and the sender has a
database of elements, PSl is a little bit like keyword PIR

e But in keyword PIR, the client is allowed to learn information
about other entries in the database, and in PSI, the receiver is not

® Symmetric PIR (SPIR)

e The database in PSI is held by one party
® The PIR protocols we've seen so far require at least two (non-colluding)
parties to hold copies of the database
® But we'll see single-party PIR protocols in future modules

3-102

A simple but broken PSI protocol

Let the sender’s set be S = {s1,5,...,5,} and the receiver's set
be R={n,rn,...,rn}

The sender computes hashes of its elements
H(s1), H(s2), ..., H(sn) and sends them to the receiver

The receiver hashes its own elements and looks for matches

Why is this insecure?

3-103

A simple PSI protocol

The sender hashes their elements to points in a group:

P1 = Hp(Sl),PQ = Hp(SQ),...,Pm = p(sm)

The receiver does the same:

Ql = Hp(rl), Q2 = Hp(I’Q), ceey Q,, = Hp(r,,)

The receiver picks a random scalar a and sends to the sender:
a-Ql,a'Qg, . .,a~Q,,

The sender picks a random scalar b and sends to the receiver:
b-Py,b-P,, ..., b-P, and H(ba-Q1), H(ba-Q,), ..., H(ba-Q,)
The receiver computes H(ab-Py), H(ab-P,), ..., H(ab-P,,) and
finds the values in common

3-104

A simple PSI protocol

The sender hashes their elements to points in a group:

P1 = Hp(Sl),PQ = Hp(SQ),...,Pm = p(sm)

The receiver does the same:

Ql = Hp(rl), Q2 = Hp(I’Q), ceey Q,, = Hp(r,,)

The receiver picks a random scalar a and sends to the sender:
a-Ql,a'Qg, . .,a-Q,,

The sender picks a random scalar b and sends to the receiver:
b-Py,b-P,, ..., b-P, and H(ba-Q1), H(ba-Q,), ..., H(ba-Q,)
The receiver computes H(ab-Py), H(ab-P,), ..., H(ab-P,,) and
finds the values in common

Why do we not have the same problem as before?

3-105

Properties of this protocol
Expressibility: balanced PSI
Minimum number of parties: 2 servers
Threat model: semi-honest

Maximum number of adversarial parties: 1

Performance (sender has m elements, receiver has n):
® Local computation: O(m + n)
® Total communication: 32m+64n bytes
® Latencies: 2

3-106

Secret sharing without reconstruction

® In Module 2, we saw how to share a secret (say a private key)
using Shamir secret sharing

® Prevents the secret from sitting on a single computer, which would then
be vulnerable

e We also saw how to reconstruct the secret using Lagrange
interpolation so that it can be used (say to sign a message)

® But once the secret is reconstructed, it's vulnerable again!

e Better: be able to use the shared private key to sign a message
without reconstructing it!

® Key idea: use shares of the key to produce shares of the signature, and
only reconstruct the signature, not the key

3-107

Schnorr signatures

3-108

m, a

r<%

R+ rB
c <+ H(R,A m)
Z<—r+c-a

Schnorr signatures

A

=
@

-B

3-109

Schnorr signatures

m,a A:aB
Q m,o = (R, z) ﬂ
\ ':J.
r—%
R+ r-B
c <+ H(R,A m)

Z4+—r+c-a

3-110

Schnorr signatures

m,a A = a-B
Q m,o = (R, z) A
\ T “

r<3% c <+ H(R,A, m)
R« rB zBLZR+cA
c < H(R,A m)

Z4+—r+c-a

3-111

Threshold Schnorr signatures

A=aB
m,o = (R, z) A
c+ H(R, A m)

zBZR+cA

3-112

Two-Round threshold Schnorr signatures

S1
p
[

Sn

3

e

D&

3-113

Two-Round threshold Schnorr signatures

S1
P
»
r1<—$
Sy Rl%rl-B
P
a»
r2<—$
R2<—r2-B S3
@
\
r3<—$

R3 < r3-B

Sn

<

/

r,+—$
R, r,-B

3-114

Two-Round threshold Schnorr signatures

51

ﬂ
»

r1<—$ R]-
S R1<—r1-B

3 & <

r2<—$ R3
R2<—r2-B S3 Rr”<_$B
P‘ n < In*
\
I’3<—$

R3 < r3-B

3-115

Two-Round threshold Schnorr signatures

e

51

@
»

3-116

Two-Round threshold Schnorr signatures

e

51
@
@

A

D&

3-117

Two-Round threshold Schnorr signatures
S1
®

c+ H(R,A m)
Sy z1¢n+tAcs

e R, m ?
w <€

c+ H(R,A m) R,m
ZQ<—I’2+>\2'C-52 S3 C%H(RaAvm)
Zn 4 I+ Ap-C-Sp,
8
c+ H(R,A, m)

734 I3+ A\3:C-S3

3-118

Two-Round threshold Schnorr signatures

51

@
»

c <« H(R,A, m) 21
Sy z1¢n+tAcs

5 2 > 9

c« H(R,A, m) 23
ZQ<—I’2+>\2'C'52 S3 C%H(R}\Avm)
P\' Zn 4y + Ap-C-S,
c+ H(R,A, m)

734 I3+ A\3:C-S3

3-119

Two-Round threshold Schnorr signatures

e

51

@
»

3-120

Problem: parallel composition

2019 IEEE Symposium on Security and Privacy

On the Security of Two-Round Multi-Signatures

Manu Drijvers*, Kasra Edalatnejad®. Bryan Ford!. Eike Kiltz!, Julian Loss?, Gregory Neven®, Igors Stcpmmvs'"
*DFINITY, 'ETH Zurich, *EPFL, Ruhr-Universitit Bochum, TUCSD.

3-121

FROST

S1
p
®
d17e1 — $
S Dy < d,-B
e Ei < ¢-B
o
d27e2)
D, + d>-B 53
E, + &-B ()
\
d3’e3)
D; < d3-B

E3 — e3'B

FROST

3-123

FROST

52
o
o
d2,€2 +~9$
D, +— d»-B S3 dnven%$
E, « B o D,<+ d, B
\ E,+ e,-B
d3,e3 ~$
D3 — Cl3B

3-124

FROST

L« <(D1, El),
(Dy,E),...)

ey
D&
&
S

3-125

e

FROST

S1
@
®
L,m
Sn
L,m ?
L,m /

D&
>
S

3-126

FROST

S
-
3

5 s
2
z L,m ?
o L,ym |
pi <= Hy(A, H(m), ’
- 53
A7) e

R 2. (Di+piEi)
C < H(R7A7 m)

FROST

71 di+prre+A-ces

S
?2) L,m ?

w <€ /
Zy—dh+prrer+ Acs L, m
Zp < dy+ po-€n+ ApeCsy
53
ﬁ

\
73 <= d3 + p3-€3+ A3-C-S3

3-128

FROST

S1

@
»

71 di+prrep+A-cos

52
: - - 9

& ;
< dh+prer+ Aces z
26t pret s Zp < dp+ poren + Apecosp
53
ﬁ

\
73 <= d3 + p3-€3+ A3-C-S3

3-129

FROST

o

e
A

3-130

Properties of this protocol
Expressibility: threshold Schnorr signatures
Minimum number of parties: t
Threat model: malicious

Maximum number of adversarial parties: t — 1

Performance:

® Local computation: O(t + |m|) per party
® Total communication: 64t bytes preproc + (64t + |m| + 32)t bytes
® |atencies: 1 preproc + 2

3-131

