
CS 798
Privacy in Computation and Communication

Module 7
Privacy in Communication: Censorship Resistance

Spring 2024



7-2

Internet surveillance and censorship

• As we mentioned earlier in the course, Internet surveillance and
censorship happens all over the world

• Even in countries you wouldn’t immediately think of

• Surveillance typically does not directly interfere with Internet
traffic

• Censorship does attempt to actively restrict information flows



7-3

Types of Internet censorship

Internet censorship can target two broad classes of online actions:

• What people can publish / post / say / chat about online

• What people can view / read online

How does Internet surveillance limit these classes of actions?



7-4

Who is the censor?

• Internet censorship is often done at a government or national
backbone level

• National firewall

• It can also be at an ISP level
• Possibly direct or indirect instructions from governments
• Different ISPs in a single country may implement different censorship

policies

• Or at an app level
• Individual apps may have blocklists in them of sites the app will not let

you access, or words or phrases the app will not let you say



7-5

What can the censor see?

• App-based censor
• Basically everything
• How to talk about things the censor doesn’t want you to talk about?

• Network-based censor
• Packets you are sending and receiving
• Packet headers: IP addresses, ports
• Packet contents: may or may not be encrypted



7-6

What can the censor see?

Unencrypted protocols:

• Everything

• They can block selected traffic based on destination, metadata,
content, or many other things



7-7

What can the censor see?

TLS

• The IP addresses of client and server

• As you saw in Assignment 1, typically the server hostname as well
(SNI), but sometimes not

• What exactly the client is doing within the TLS connection is not
explicitly revealed

• e.g., what page on a web server is being fetched

• But packet sizes, directions, and inter-packet timings are revealed



7-8

What can the censor see?

VPNs and Tor

• The IP address of the client

• The IP address of the VPN server or Tor guard node

• Not explicitly the IP address or hostname of the server

• But still (usually) the packet sizes, directions, and inter-packet
timings



7-9

What can the censor see?

What can the censor do with the packet sizes, directions, and
inter-packet timings?

• In the TLS scenario, for example, the censor can tell what website
the client is accessing

• It can crawl that website to find the sizes of each of the pages on
it

• And other things, like the number of embedded images

• It can match that to the pattern of traffic it sees from the client



7-10

Webpage fingerprinting

• This is called webpage fingerprinting

• It is a classification problem that you could approach using
machine learning

• But you don’t always need such heavyweight tools
• See Assignment 4, where you will do this manually

• This is typically a closed-world classification problem

• Webpage fingerprinting can be used to block individual pages on a
TLS website

• A censor might want to do this for youtube, github, etc.



7-11

Website fingerprinting

• In the VPN or Tor scenario, the server identity is not explicitly
known to the censor

• The censor could still crawl websites they would like to block, and
try to tell whether the client’s traffic pattern matches one of them

• But the client could also be accessing an allowed website
• This is far more likely, in fact
• This is typically an open-world classification problem



7-12

Webpage and website fingerprinting

• Webpage and website fingerprinting will typically have both false
negatives and false positives

• But the base rate is also very low

• So even a very low false positive rate can be problematic for the
censor

⇒ Base rate fallacy
• Suppose a base rate of 1 in 100,000 webpage visits is to a disallowed page
• If the fingerprinting classifier is 99.9% accurate (1 in 1000 false positive

rate), what happens?



7-13

What do censors block?

• Because of this, we don’t typically see censors using webpage or
website fingerprinting to block accesses in practice

• But they may still be using them to mark a particular client as
“suspicious” internally

• Censors do block traffic by other criteria:
• IP addresses (possibly only traffic to particular ports)
• Host names
• Contents of traffic (if unencrypted)
• Protocol being used
• If it appears to be circumvention traffic



7-14

Censorship circumvention

• Tools that protect communication metadata (see Module 6) can
be useful as circumvention tools

• Tools that allow people to get around Internet censorship and access the
free and open Internet

• Since the tools protect the metadata of who you’re talking to, it is
hard for the censor to block communications to some servers but
not others

• Note that the censor can always shut down the whole Internet (as
happens in some countries for various reasons)



7-15

Censorship circumvention

• Tools that protect communication metadata (see Module 6) can
be useful as circumvention tools

• Tools that allow people to get around Internet censorship and access the
free and open Internet

• Since the tools protect the metadata of who you’re talking to, it is
hard for the censor to block communications to some servers but
not others

• Note that the censor can always shut down the whole Internet (as
happens in some countries for various reasons)



7-16

Censorship circumvention

• But as long as the “normal” way to access the Internet does not
protect metadata, the censor will typically just try to block the use
of such circumvention tools entirely

• We’ll look at the example of censors trying to block Tor



7-17

Example: blocking Tor

• The simplest thing the censor could try is to block the places from
which you might download the Tor Browser in the first place

• Mostly just block torproject.org

• On mobile, disallow Tor apps from the local app store



7-18

Example: blocking Tor

Circumvention responses:

• Mirror sites
• EFF, Calyx

• GetTor service
• Autoresponders using email or Telegram
• Reply with a link to Tor Browser hosted on major sites less likely to be

completely blocked, like Dropbox, github, Google Drive



7-19

Blocking Tor nodes

• Censor’s next step: try to block the use of the Tor network

• Recall that using the Tor network involves connecting to Tor nodes

• Also, the list of Tor nodes is public

• So the censor just blocks the IP addresses (possibly only specific
ports) used by Tor nodes



7-20

Bridges

• Circumvention response: have a bunch of Tor nodes that aren’t in
the public list

• People in regions that block access to Tor can use these nodes
(called bridges) instead of the first node in their circuits

• Why only the first node? That is, why can a Tor user just use
regular listed nodes for the second and third hops in their circuits?



7-21

Learning bridges

• A key question: if these bridges aren’t public, how do Tor users in
a censorial regime learn them?

• Note that if the censor learns about a particular bridge, it can
block it, just as for regular Tor nodes

• This is the bridge distribution problem
• More on this later, but also on Assignment 4



7-22

Blocking bridges

• As above, the censor could try to learn about bridges the same
way that the users in their country would

• But the censor could also try to find the use of bridges it didn’t
already know about

• It can watch Internet traffic, looking for connections that look like
they’re using the Tor protocol



7-23

Blocking bridges

• Early versions of the Tor protocol were trivially recognizable
• The TLS handshake (which happens before encryption starts) had a

number of Tor-specific fields in it

• Modern versions are still quite recognizable from features of the
traffic (packet sizes, for example)

• Censors do active probing: if they see a connection to a server
that looks like it may be Tor traffic, the censor itself tries to
connect to that server using Tor

• If the server responds correctly, it is a bridge, and the censor blocks it
• This isn’t just for Tor; e.g., China also does active probing for

ShadowSocks servers



7-24

Defending against active probing

• Can bridges tell when they are being connected to by the censor
rather than by a “real” Tor user?

• If they could, they could just refuse connections from the censor, or serve
them some innocuous website, or something like that

• Figure out what IP addresses the censor is using?
• They typically have the ability to (and often do) temporarily “hijack” an

arbitrary IP address in the country and use that



7-25

Defending against active probing

• Better: hand out a secret along with the bridge information
• You can only connect to the bridge if you know the secret

• This doesn’t help against a censor that learned bridge information
in the same way a Tor user would

• But the censor could just block the bridge by IP address anyway in that
case

• But it does help against censors looking for bridges by watching
network traffic and then trying to confirm with active probing



7-26

Pluggable transports

• But there’s still the problem of the censor recognizing the traffic
as Tor traffic in the first place

• Circumvention response: pluggable transports

• Normally, the Tor protocol is transported from the client to the
bridge using regular TCP

• Tor provides a number of alternative ways to transport this data



7-27

Pluggable transports

• The general idea is that you need a two-way (reliable) channel
between the client and the bridge that you can use to send Tor
protocol data

• The goal is to make this channel not look like the Tor protocol,
and to make this channel unlikely to be blocked by the censor

• They are “pluggable” because they use a common API, so they
are easy to swap in and out if the censor figures out how to block
one of them



7-28

Censorship circumvention

• One observation that is commonly used to the circumventor’s
advantage is that the censor is simultaneously monitoring a large
number of network connections

• In order to not fall behind, it has to process packets at basically
the same rate they arrive (so on the order of microseconds per
packet)

• The censor equipment therefore tends to take shortcuts
• How robust is this observation?



7-29

Censorship circumvention
• For example, Geneva (Bock et al., 2019) observed that China’s
Great Firewall (GFW) does not validate the checksums on packets
as they fly by

• One of the censorship circumvention strategies Geneva
automatically (using genetic algorithms) came up with was to send
a duplicate ACK packet when setting up the TCP connection

• The second copy, however, had the reset (RST) flag set, but an incorrect
checksum

• The bridge would ignore the RST packet because of the incorrect
checksum, but the GFW didn’t check the checksum, saw the RST,
thought the connection was closed, and ignored the rest of the
traffic on the connection



7-30

Censorship circumvention
• There are many of these network-level tricks to make the censor’s
equipment think it saw something different from what the bridge
actually saw

• And so mistakenly classify it as benign traffic instead of censorship
circumvention traffic

• Challenge: such networking tricks usually need OS-level access on
the client, and sometimes also on the bridge, so they’re harder to
deploy than just running an ordinary program

• What can we easily send from the pluggable transport?
• TCP connections, UDP packets
• With arbitrary content



7-31

Censorship circumvention

• So what kind of traffic should we send in order to circumvent
censorship?

• It somewhat depends on the censor’s approach to protocols

• Blocklist: block a specific list of protocols (e.g., the Tor protocol)

• Allowlist: block everything you don’t recognize as a protocol you
want to permit (e.g., HTTP, HTTPS, WebRTC)

• What are the tradeoffs between a blocklist and an allowlist (for
the censor)?



7-32

Strategy: look like nothing

• One strategy is to transport the (Tor protocol) data over a fully
encrypted protocol

• Most encrypted protocols (like TLS for example) begin with an
unencrypted handshake, and may have other unencrypted portions
(containing message types, lengths, or other metainformation)

• In a fully encrypted protocol, all of the TCP content is encrypted,
from the very first byte

• The packet headers are still not encrypted, but that’s expected



7-33

Strategy: look like nothing

What is still revealed?

• Packet sizes

• Packet timings

• The fact that the protocol is fully encrypted

Examples: lyrebird, ShadowSocks



7-34

Strategy: look like allowed traffic
• A second strategy is to make your circumvention traffic look like
allowed traffic

• An allowed protocol, destined for a server that’s not blocked
• The protocol you intend the censor to see is called the overt protocol
• The traffic (for example, the Tor protocol traffic) you are hiding within

that protocol is the covert data

• This is actually quite hard to do really well
• There are almost always ways to distinguish real traffic of a given protocol

from traffic pretending to be that protocol

• But what property of the censor can we use here to our
advantage?



7-35

Strategy: look like allowed traffic

• We might only have to make traffic that looks “close enough” to
the real protocol

• But: the censor’s technological capabilities may improve

• And then a “close but not quite” protocol may stick out even more

• Examples: SkypeMorph, Marionette
• You will implement a simple version of this strategy on Assignment 4



7-36

Strategy: be allowed traffic

• In order to defend against a censor being able to eventually detect
the differences between a real use of a protocol and a pluggable
transport pretending to use the protocol, we can alternately have
the pluggable transport actually use the allowed protocol

• This often isn’t as easy as it sounds

• You still have to protect the packet sizes and timings from the
underlying Tor protocol from affecting the packet sizes and
timings from the overt protocol

• At least not too much



7-37

Strategy: be allowed traffic

Videoconferencing has some nice properties as an overt protocol

• It is extremely common, and so blocking it would be problematic
for the censor

• It is relatively high bandwidth

• It is bidirectional

Examples: DeltaShaper, Snowflake



7-38

Robustness vs. throughput

When hiding covert data inside an overt protocol, there are two
properties of interest:

• Robustness: how likely is it that the hiding remains effective, even
as the censor’s capabilities improve?

• Throughput: how much covert data (per unit time) can you hide
in each direction?

• Relatedly latency: how long does it take for your covert data to get
through?

These two properties are often in conflict!



7-39

Robustness vs. throughput

• It is much easier to hide a small amount of data in any given
protocol than a large amount of data

• For this reason, many pluggable transports have two phases:

• A bootstrapping (also called signalling) phase, where the client
learns a small amount of information over a channel that is very
hard to block

• The client can learn bridge addresses through similar email or Telegram
channels as mentioned earlier for GetTor

• These channels are not secret, but they are hard to block



7-40

Robustness vs. throughput

• In the second phase, the client does most of its data transfer
through pluggable transports, using bridge IP addresses (and other
information) learned in the bootstrapping phase

• These channels are secret: the censor should not be able to tell
which uses of the overt protocol are real uses, and which are being
used to carry covert traffic



7-41

Where do the bridges run?

• When a client learns a bridge IP address in the bootstrapping
phase, where does the IP address come from?

• Traditionally, a volunteer runs a server somewhere, and tells its IP
address to the bootstrapping server

• Watch out for the censor enrolling its own machines as bridges!

• Problem: most people have limited ability to run a server
somewhere, particularly with a static IP address



7-42

IP agility

• As censors learn the IP addresses of bridges (and block them), it is
helpful if more bridges could be created at new IP addresses

• They could be run by the same people as the old (now blocked)
bridges, or new people

• Ideally, the circumvention tool automatically notices when its
bridge is blocked, and obtains a new IP address

• Even better if it doesn’t interrupt what the user is doing but they
seamlessly transition from using one bridge to another



7-43

Strategies to get more bridge IP addresses

• We’ll look at some strategies used to get more IP addresses that
can serve bridge traffic

• Nowadays, the most common way to run a server on the Internet
is in “the cloud”

• i.e., other people’s computers

• Long ago, Tor (for example) made available public cloud images
volunteers could run that would start a bridge



7-44

Cloud-based bridges

• Pro: once the bridge was started, it had a stable IP address

• Pro: Anyone with a cloud account could quite easily run a bridge

• Pro: If an IP address got blocked, you could usually just shut that
bridge down and start a new one on a different IP address

• Con: Quite expensive, particularly for volunteers



7-45

Cloud-based bridges

• Recent idea (SpotProxy, Kon et al., 2024): as pluggable
transports gain increased IP agility, transient Spot VMs in clouds
can be effectively used as bridges

• Spot VMs are cloud-based virtual machines that are made
available at a steeply discounted price (savings of up to 90%), but
which can just disappear at no notice if a higher-paying customer
arrives

• Makes costs to volunteer bridge operators much more reasonable
• Heavily relies on IP agility



7-46

Serverless bridges

• IP agility also admits another avenue: serverless bridges

• People run bridges without running servers

• For example, they run a bridge in their web browser

• Snowflake is such a style of bridge



7-47

Snowflake bridges

• You can run a snowflake bridge just by opening a tab in your web
browser at https://snowflake.torproject.org/embed

• As long as the tab is open, your bridge is running

• You can also install a browser extension that effectively just visits
that page in the background all the time

• (Snowflake is also available as a server you can run on your own
machine or a cloud machine, if you prefer that style of bridge)

https://snowflake.torproject.org/embed


7-48

Snowflake bridges

• Tricky bit: users are often behind Network Address Translation
(NAT), which can limit the ability to receive incoming connections
from the Internet

• The Snowflake pluggable transport uses WebRTC (the
audio/video communication protocol we’re using right now!) as
the overt protocol, which already has support for getting around
the NAT problem



7-49

Router-based censorship circumvention

• Another source of IP address for bridges is to give censored users
IP addresses to connect to that don’t actually have bridges
running at them

• Then deploy routers in the network that can detect censorship
circumvention traffic destined for those IP addresses, and send
that traffic to an actual bridge

• Examples: Slitheen (Bocovich & Goldberg, 2016), Conjure (Frolov
et al., 2019), NetShuffle (Kon et al., 2024)



7-50

Router-based censorship circumvention



7-51

Router-based censorship circumvention



7-52

Router-based censorship circumvention



7-53

Router-based censorship circumvention



7-54

Router-based censorship circumvention



7-55

Router-based censorship circumvention



7-56

Router-based censorship circumvention



7-57

Router-based censorship circumvention



7-58

Bridge distribution

• We mentioned earlier the bridge distribution problem:

• How do we give bridge information to censored users while
preventing the censor from learning them?

• If the censor learns the bridge in the same way as the intended users do, it
can block the bridge

• Recall this is different from the censor trying to learn bridges by watching
network connections, or active probing

• This problem is in some sense impossible to solve perfectly



7-59

Bridge distribution

• One technique is rate limiting

• Limit the rate at which new bridges are handed out

• Either overall, or to individual requesters
• But if the latter, then you need to be able to limit the ability for the

censor to pretend to be many different requesters
• Sometimes you “farm this out” to another service that already tries to

limit the number of accounts one person can have, like gmail

• The rate will depend on how many bridges you have available,
compared to how quickly you see new users



7-60

Bridge distribution

• But it would still be helpful to be able to distinguish the censor
from “real” bridge users

• Key observation: leverage the social graph
• Who is friends with whom?
• In real life, not social network “friends”

• The observation is that it’s hopefully rare that a real bridge user
(unknowingly) has a censor as a friend



7-61

Bridge distribution

• Simplest version: people give bridge information to their friends
(and not to the censor)

• Problem: How do you start the process?

• Problem: What happens if someone is unknowingly friends with a
censor?

• Problem: What if you don’t have any bridge-using friends?



7-62

Bridge distribution

• Add a notion of “reputation”

• Bridge users gain reputation if their bridges remain unblocked, lose
reputation if their bridges get blocked

• Higher reputation makes it easier to get and share bridges

• Censor-friend has a conundrum: block the bridge it learned (and
lower both its own and its friend’s reputation score), or leave the
bridge unblocked and keep a high reputation to try to learn more
bridges in the future



7-63

Bridge distribution

• Who keeps track of users, friend connections, and reputations?

• The simple solution (e.g., Salmon (Douglas et al., 2016)) is the
bridge authority

• The bridge authority knows everything about all bridges in the
system, all users in the system, which user knows about which
bridge, all users that are friends with other users, all users’
reputations

• Problems with this approach?



7-64

Bridge distribution

• In Lox (Tulloch & Goldberg, 2023), the bridge authority knows:
• The set of all bridges in the system, and whether they have been blocked

or not

• It does not know:
• The set of users
• Who is friends with whom
• Which users know about which bridges
• The reputation of each user

• Who does know these things?
• The users themselves!



7-65

Bridge distribution

• In Lox, users can interact (anonymously) with the bridge authority
to:

• Invite friends
• Join Lox with an invitation from a friend
• Join Lox without an invitation
• Raise their reputation score
• Get new bridges if theirs are blocked (but lower their reputation score)

• All using zero-knowledge proofs so that the bridge authority
cannot learn any sensitive information

• The Tor Project is currently implementing Lox



7-66

Internet shutdowns

• As briefly mentioned before, a country’s regime sometimes creates
a complete Internet shutdown

• e.g., just in 2024, India, Ethiopia, Iran, Myanmar, Sudan, Bangladesh, . . .

• The challenge to the censorship circumventor is much larger

• Possible goals:
• Full interactive Internet access
• Just get messages out to the world (one way)
• Communicate locally (∼ city-wide), but not globally



7-67

Internet access with Internet shutdowns

• You’ll need to find a channel that isn’t blocked

• Satellite? If the satellite company allows people in your country to
use it

• Possibly cellular voice? India’s 2021 Internet shutdown, for
example, still allowed voice calls
⇒ Dolphin (Kumar Sharma et al., 2023) implemented an old-style audio

modem, but updated to work with the voice compression used on cellular
voice channels, to communicate with its bridge via an audio telephone call



7-68

Getting messages out

• It turns out some smartphones (iPhone 14, 15) have built-in
satellite communication

• But just for sending a small amount of data
• The intended use is to send your location if you’re lost in the mountains

or something like that

• It turns out you can sneak a small amount of arbitrary data out
through this channel (Heinrich, 2024)

• Even in some countries where this satellite feature isn’t explicitly
supported

• Only sending, no receiving



7-69

Local communication
• Even if all communication channels are blocked, you may still
want to communicate locally

• To organize a protest, for example

• Mesh networking apps use direct phone-to-phone communication
(Bluetooth, Wi-Fi Direct) to exchange messages, which can be
relayed through a “mesh” of phones to spread the range

• Apps like Firechat, Bridgefy, Briar have been used in the past
• None of those protects communication metadata

• More recent systems like Moby (Pradeep et al., 2022) protect
both the contents of messages and metadata



7-70

Wrapping up
• In this course, we looked at many ways to achieve privacy in
computation and communication

• Doing so keeps sensitive information out of the hands of attackers
who might compromise servers, of companies that might exploit
the information, and sometimes even of governments that might
not be working in your interest

• When you go on to design and build systems that perform
computation and communication, please keep these lessons and
techniques in mind, to avoid causing the next big data breach, and
to protect privacy, freedom, and autonomy online!


