
CS 798
Privacy in Computation and Communication

Module 3
Privacy in Computation: Distributed Trust

Spring 2024

3-2

Distributed trust

Recall the three main ways to achieve privacy in computation:

• Distributed trust

• Trusted hardware

• Homomorphic encryption

3-3

Distributed trust

Recall the three main ways to achieve privacy in computation:

• Distributed trust

• Trusted hardware

• Homomorphic encryption

3-4

MPC: multiparty computation

• The main way to use distributed trust to achieve privacy in
computation is by using MPC (multiparty computation)

• Sometimes called SMC (secure multiparty computation)

3-5

MPC: multiparty computation

Alice, Bob, and
Carol want to
compute some
function f (a, b, c)

a b

c

3-6

MPC: multiparty computation

A few servers help
many clients
compute over their
private inputs

a b c d
BP

e

3-7

MPC: multiparty computation

A few servers help
many clients
compute over their
private inputs

a b c d
BP

e

a0, b0, c0, d0, e0 a1, b1, c1, d1, e1

a2, b2, c2, d2, e2

3-8

Properties of MPC protocols

• Expressibility

• Minimum number of parties

• Threat model

• Maximum number of adversarial parties

• Performance

3-9

Expressibility

• What functions f can the MPC protocol compute privately?

• Some protocols are generic: they can compute any function that
has bounded runtime

• Some are specific: they are designed to (more efficiently) compute
one particular function

• In this module, we will start with generic protocols, and later look
at a few specific ones

3-10

Generic protocols
• As discussed in Module 1, the high-level approach is to express
your function as a circuit of Boolean or arithmetic gates

• Some protocols come with a compiler that will take your function
written in some reasonable language, and automatically generate
the circuit for you

• Recall that circuits are oblivious: they always perform the same
actions, regardless of the input, since the parties executing the
circuit cannot know the input
• So the compiler must compile any if/then/else statements into circuits

that compute both the “then” and “else” parts, and use the “if” test to
select which results to keep and which to discard

3-11

Generic protocols

x1

y1

b1

−

∗

+

• The clients (with the inputs) secret share their inputs across all
the (computational) parties (party 1 shown above)

3-12

Generic protocols

x1

y1

b1

−

∗

+

• For each gate in turn, the parties jointly evaluate the gate

• Each party has a share of the inputs to the gate; each party must
compute a share of the output of the gate without learning the
true inputs or output

3-13

Generic protocols

x1

y1

b1

−

∗

+

• All of the secret sharing schemes (additive, XOR, Shamir,
replicated) we talked about are linear

• That means if x1, . . . , xn are shares of a value x and y1, . . . , yn are
shares of a value y , then (x1+ y1), . . . , (xn+ yn) are shares of x + y

3-14

Generic protocols

x1

y1

b1

−

∗

+x1 − y1

• Linear gates (⊕, +, −, multiplication by a public value) are then
easy:

• Each party just locally computes the gate on its shares of the
inputs to get its share of the output

3-15

Generic protocols

x1

y1

b1

−

∗

+x1 − y1

w1

• Non-linear gates (∧, ∨, ∗) are more complicated, and require the
parties to interact for each such gate

• The details vary with each protocol; we’ll look at some examples
later on

3-16

Generic protocols

x1

y1

b1

−

∗

+x1 − y1

w1

w1 + y1

• Non-linear gates (∧, ∨, ∗) are more complicated, and require the
parties to interact for each such gate

• The details vary with each protocol; we’ll look at some examples
later on

3-17

Minimum number of parties
• How many parties do you need to run this protocol?

• Count the parties participating in the computation, not clients that just
submit input values

• (Enough of) these parties must not collude to reconstruct the private
inputs!

• Distributed trust: you have to trust that some of the parties are behaving
properly, but you don’t need to know which ones

• 2, 3, 4 are common values
• Often written 2-PC, 3-PC, 4-PC

• The larger this value, the more challenging it will be to deploy the
protocol
• You need to find that many parties who will collaborate to execute the

protocol, but not collude to break it

3-18

Threat model
• As discussed earlier, some of the parties may be untrustworthy /
adversarial

• Does the protocol remain secure if some of the parties collude, but
otherwise follow the protocol?
• It typically cannot remain secure if all parties collude, since then there’s

effectively just one party, and there’s no distributed trust

• Does it remain secure if some of the parties deviate from the
protocol?
• Both: does the adversary learn the private inputs, but also can the

adversary crash the protocol and cause it not to output the correct answer
(or not output anything at all)?

• Producing the correct answer even when some parties misbehave is called
robustness

3-19

Maximum number of adversarial parties

• How many parties in the protocol can be adversarial and still have
the protocol be secure?

• Weakest form: just one; if even two parties collude, they can learn
the private inputs

• Strongest form: all but one; if even one party is honest, the
private inputs are safe
• But: it’s not generally possible to make such systems robust, so there’s a

tradeoff

3-20

Maximum number of adversarial parties

• There are two broad classes of protocols:

• Honest majority:
• The number of adversarial parties is strictly smaller than the number of

honest parties

• Example: 3-PC where one party can be adversarial, or 5-PC where two
parties can be adversarial

• Honest minority:
• As few as one party needs to be honest
• But as above, you generally lose robustness in that case

3-21

Performance

• Different MPC protocols have different performance characteristics

• Important things to measure:
• Local computation at each party
• Total amount of communication by each party
• Number of latencies / sequential messages of communication

• Which is most important?
• Depends on the deployment scenario

3-22

MPC deployment scenarios

• Recall the MPC parties cannot collude

• Imagine all the parties had their machines in a single cloud
datacentre (e.g., Amazon)

• Then you’re trusting Amazon itself not to “peek inside” the
running machines to see the shares of the clients’ inputs

• If you’re willing to do that, why not just have Amazon run one
single machine to do the computation without any privacy, and
just trust Amazon that it won’t look inside?

3-23

MPC deployment scenarios

• So for MPC, you need to have machines actually controlled by the
different parties

• You could have different parties bring their computers all to one
place and hook them up together
• Where no one else has access to the machines
• This is of course inconvenient and probably unlikely

• But if you can, then you get very fast inter-party communication
(tens to hundreds of Gbps) and very low inter-party latencies (tens
to hundreds of microseconds)
• In that case, the bandwidth and number of latencies don’t matter very

much, and the amount of local computation will dominate

3-24

MPC deployment scenarios

• The alternative is that the parties’ machines are communicating
over the Internet

• Probably at best ≈1Gbps, tens of milliseconds latency
• The number of latencies becomes the bottleneck
• You can do a lot of computation in the time it takes to receive a message

from another party

• Also note that it’s way easier to deploy machines with more
computing power (cores, etc.) than it is to increase your
bandwidth or decrease your latency to the other parties

3-25

Non-linear gates

• We saw earlier that linear gates are very easy to evaluate
• Only some (very simple) local computation, no communication at all

• How do non-linear gates work?
• It depends on the details of the MPC protocol, and in particular which

secret sharing technique is used

• We’ll look next at how to compute a multiplication gate, using
three different kinds of secret sharing
• Additive, Shamir, replicated

3-26

Multiplication gate

• The general setup is that each party i has shares xi and yi of the
inputs (x and y) to the multiplication gate, and they want to
perform some protocol so that each party i ends up with a share
zi of the product z = x ·y .

xi

yi

∗ zi

3-27

Additive secret sharing

• Suppose we have two parties (2-PC) using additive secret sharing
• So x = x1 + x2 and y = y1 + y2

• We want party 1 to end up with z1 and party 2 to end up with z2
such that z1 + z2 = x ·y = (x1 + x2)·(y1 + y2)
• Without revealing x , y , or z to either party!

• The key trick: Beaver triples

3-28

Beaver triples
• Ahead of time, distribute shares of random inputs (a and b) and
output (c) of a multiplication gate to the parties
• So party 1 gets (a1, b1, c1) and party 2 gets (a2, b2, c2), where

a1, b1, c1, a2, b2 are independent and random, and
c2 = (a1 + a2)·(b1 + b2)− c1

• c2 is also then random (as we saw before), but not independent

• These random triples do not depend on the clients’ inputs

• You will need to distribute one Beaver triple in advance for every
multiplication gate in the circuit you will want to compute on the
clients’ inputs

3-29

Beaver triples
• The two parties use a and b to blind x and y respectively

• Each party sends their share of α = x + a and β = y + b to the other
party (so both parties can reconstruct α and β)

• Since a and b are random, learning α = x + a tells you nothing about x ,
and similarly for y

• Party 1 computes z1 = αy1 − βa1 + c1,
Party 2 computes z2 = αy2 − βa2 + c2

z1 + z2 = α(y1 + y2)− β(a1 + a2) + (c1 + c2)

= α·y − β ·a + c

= (x + a)y − (y + b)a + c

= xy + ay − ay − ab + c = xy (since c = ab)

3-30

Preprocessing

• This protocol is an example of a protocol with a preprocessing
phase

• Some amount of work is done in advance, before the clients show
up with their inputs

• This can reduce the amount of time it takes to process the clients’
inputs once they show up (the latency)

• The preprocessing phase is sometimes called the offline phase, but
that’s a bad name
• The parties definitely have to be online during this phase

3-31

Preprocessing

• Where do these Beaver triples come from?

• A couple of options:

• The two parties run an MPC protocol to jointly create them

• Have a third party with a limited role:
• Only active during the preprocessing phase
• Just sends a bunch of these random triples to the two parties (in a single

latency), and then exits (nothing is ever sent to this party)
• This is sometimes called “2+1-PC” meaning it’s 2-PC plus this one more

party with the very limited role

3-32

Properties of this protocol

• Expressibility: generic

• Minimum number of parties: 2 (+ 1 preprocessing only)

• Threat model: semi-honest

• Maximum number of adversarial parties: 1

• Performance (g total gates, m mult gates, mult depth d):
• Local computation: O(g)
• Total communication: 6m preproc + 2m per party
• Latencies: 1 preproc + d

3-33

Shamir secret sharing

• With Shamir secret sharing, there are n parties, and any t of them
can reconstruct the private data
• So at most t − 1 can be adversarial

• Recall: shares of a value are points on a degree t − 1 polynomial
whose y-intercept is the value

∗ =

3-34

Shamir secret sharing

• With Shamir secret sharing, there are n parties, and any t of them
can reconstruct the private data
• So at most t − 1 can be adversarial

• Recall: shares of a value are points on a degree t − 1 polynomial
whose y-intercept is the value

∗ =

3-35

Degree reduction

• If each party i locally multiplies their xi and yi to get wi , then the
wi do lie on a polynomial whose intercept is in fact x ·y
• But the degree of that polynomial is 2t − 2 instead of t − 1

• If we were to reconstruct the value from the wi shares, how would
we do it?
⇒ Lagrange interpolation: w = λ1w1 + λ2w2 + · · ·+ λnwn

• So we want to privately compute w from the n private inputs
w1, . . . ,wn (the λi are public, remember)

3-36

Degree reduction

• The key trick: we can use MPC for this!
• And since the Lagrange interpolation formula is linear, we don’t have a

problem where in order to evaluate a multiplication gate, we need to
evaluate one or more multiplication gates

• So the multiplication gate protocol for Shamir secret sharing is:
• Each party i locally multiplies xi ·yi to get wi

• Each party i makes n shares wi ,1, . . . ,wi ,n of wi with the correct t
and for each j , sends share wi ,j to party j

• Each party j locally combines the shares they received with Lagrange
interpolation to get zj = λ1w1,j + λ2w2,j + · · ·+ λnwn,j

• The zj are now Shamir secret shares (with the correct t) of z = x ·y

3-37

Degree reduction

• For this to work, we must have enough parties to be able to
reconstruct the intercept of the degree 2t − 2 polynomial
• So n ≥ 2t − 1, and recall there are at most t − 1 adversarial parties

⇒ Honest majority setting

• Look what we did here:
• We evaluated the reconstruction function using the private computation

mechanism itself in order to get a “clean” sharing of a value

• We will see this technique again later in the course

3-38

Properties of this protocol

• Expressibility: generic

• Minimum number of parties: n ≥ 2t − 1

• Threat model: semi-honest

• Maximum number of adversarial parties: t − 1

• Performance (g total gates, m mult gates, mult depth d):
• Local computation: O(g + ntm)
• Total communication: (n − 1)m per party
• Latencies: d

3-39

Replicated secret sharing

• Recall how replicated secret sharing works
(simple example: n = 3, t = 2)

• Each value is additively shared into 3 pieces, each party gets 2 of them

• x = x1 + x2 + x3, y = y1 + y2 + y3

• Party 1 gets: (x1, x2), (y1, y2)

• Party 2 gets: (x2, x3), (y2, y3)

• Party 3 gets: (x3, x1), (y3, y1)

3-40

Replicated secret sharing

• Recall how replicated secret sharing works
(simple example: n = 3, t = 2)

• Each value is additively shared into 3 pieces, each party gets 2 of them

• x = x1 + x2 + x3, y = y1 + y2 + y3, want z1 + z2 + z3 = x ·y

• Party 1 gets: (x1, x2), (y1, y2), wants (z1, z2)

• Party 2 gets: (x2, x3), (y2, y3), wants (z2, z3)

• Party 3 gets: (x3, x1), (y3, y1), wants (z3, z1)

3-41

Replicated secret sharing

• First attempt (not quite good enough):

• Want z1, z2, z3 such that

z1 + z2 + z3 = x ·y = (x1 + x2 + x3)(y1 + y2 + y3)

= x1y1 + x1y2 + x2y1
+ x2y2 + x2y3 + x3y2
+ x3y3 + x1y3 + x3y1

3-42

Replicated secret sharing

• First attempt (not quite good enough):

• Want z1, z2, z3 such that

z1 + z2 + z3 = x ·y = (x1 + x2 + x3)(y1 + y2 + y3)

= x1y1 + x1y2 + x2y1 ← party 1 can compute this

+ x2y2 + x2y3 + x3y2
+ x3y3 + x1y3 + x3y1

3-43

Replicated secret sharing

• First attempt (not quite good enough):

• Want z1, z2, z3 such that

z1 + z2 + z3 = x ·y = (x1 + x2 + x3)(y1 + y2 + y3)

= x1y1 + x1y2 + x2y1 ← party 1 can compute this

+ x2y2 + x2y3 + x3y2 ← party 2 can compute this

+ x3y3 + x1y3 + x3y1 ← party 3 can compute this

3-44

Replicated secret sharing

• First attempt (not quite good enough):

• Want z1, z2, z3 such that

z1 + z2 + z3 = x ·y = (x1 + x2 + x3)(y1 + y2 + y3)

= x1y1 + x1y2 + x2y1 ← z1
+ x2y2 + x2y3 + x3y2 ← z2
+ x3y3 + x1y3 + x3y1 ← z3

3-45

Replicated secret sharing

• First attempt (not quite good enough):

• Want z1, z2, z3 such that

z1 + z2 + z3 = x ·y = (x1 + x2 + x3)(y1 + y2 + y3)

= x1y1 + x1y2 + x2y1 ← z1
+ x2y2 + x2y3 + x3y2 ← z2
+ x3y3 + x1y3 + x3y1 ← z3

• Then party 1 sends z1 to party 3, party 2 sends z2 to party 1,
party 3 sends z3 to party 2

3-46

Replicated secret sharing

• First attempt (not quite good enough):

• Want z1, z2, z3 such that

z1 + z2 + z3 = x ·y = (x1 + x2 + x3)(y1 + y2 + y3)

= x1y1 + x1y2 + x2y1 ← z1
+ x2y2 + x2y3 + x3y2 ← z2
+ x3y3 + x1y3 + x3y1 ← z3

• Problem: Party 3 (for example) is supposed to learn z1 but already
knows x1 and y1, and so can learn information about x2 and y2

3-47

Zero sharing

• The key trick: non-interactive zero sharing
• The parties can, without communication, come up with random α1, α2,

α3 such that α1 + α2 + α3 = 0
• Use those αi to blind the values on the previous slide to prevent the

information leakage:

Party 1 computes z1 = x1y1 + x1y2 + x2y1 + α1

Party 2 computes z2 = x2y2 + x2y3 + x3y2 + α2

Party 3 computes z3 = x3y3 + x1y3 + x3y1 + α3

• Then party 1 sends z1 to party 3, party 2 sends z2 to party 1, party 3
sends z3 to party 2

3-48

Zero sharing
• So how do the parties make these αi values?

• Remember PRGs: given a key as input, produce an
arbitrary-length sequence of random-looking outputs

• Ahead of time, each party i picks a random PRG key ki
• Party 1 sends k1 to party 3, party 2 sends k2 to party 1, party 3 sends k3

to party 2

• When the parties want new αi values, they compute ri as the next
output of PRG(ki)
• Party 1 knows (r1, r2), computes α1 = r1 − r2
• Party 2 knows (r2, r3), computes α2 = r2 − r3
• Party 3 knows (r3, r1), computes α3 = r3 − r1

3-49

Properties of this protocol

• Expressibility: generic

• Minimum number of parties: 3

• Threat model: semi-honest

• Maximum number of adversarial parties: 1

• Performance (g total gates, m mult gates, mult depth d):
• Local computation: O(g)
• Total communication: 3 preproc + m per party
• Latencies: 1 preproc + d

3-50

Protocols for specific functions

• We next turn our attention to MPC protocols for specific (not
generic) functions

• These can often be implemented more efficiently than by
implementing the function using generic MPC

• We will look at a few such MPC protocols for specific functions
• Private information retrieval
• Private set intersection
• Threshold signatures

3-51

Private information retrieval

• You want to look
something up in an online
database
• For example, a database of

patents

• You want to keep private
the information being
retrieved
• For example, the patent

number (6368227) you’re
looking up

3-52

Private information retrieval

• You want to look
something up in an online
database
• For example, a database of

patents

• You want to keep private
the information being
retrieved
• For example, the patent

number (6368227) you’re
looking up

3-53

Private information retrieval

• Other uses include:
• Looking up whether a password is in a list of breached credentials

(without revealing the password)
• Looking up whether a URL is in a list of malicious websites (without

revealing the URL)

• This is called private information retrieval (PIR)
• Simplest form: you know the exact record number you want to look up

(e.g., patent number)
• But can also do more advanced queries, such as query by (private)

keyword, or even SQL queries (where the prepared statement is public,
but the parameters are private)

3-54

General setup

• A server holds a database D consisting of (equal-sized, padded if
necessary) records
• Say there are r records, each of size s

• A client has a query q
• A record number, or a keyword, for example

• Desired outcome: client learns the record corresponding to q,
server learns nothing about q
• It’s usually OK if the client happens to learn more information about D as

well, but sometimes not

3-55

A trivial solution

• Here is a trivial protocol to achieve this:

• Client sends to server: “I would like to make a query”

• Server sends to client: the whole database D

• Client looks up the information in the database themselves

• Pro: very simple (“trivial”)
Con: communication the size of D (which is r ·s)

3-56

Communicating less data

• We want “true” PIR solutions to communicate less data than the
whole database, while still not revealing anything about the query
• Asking for just half of the database, for example, reveals that the query

was in that half, so that’s no good

• You can take any of our three private computation approaches to
solve this problem:
• Distributed trust
• Trusted hardware
• Homomorphic encryption

• We’ll look at the distributed trust solution now

3-57

Multi-server PIR

• In the (simplest version of the) distributed trust setting, there are
multiple servers, each with a copy of the database D

• The client secret shares the query q and sends one share to each
server

• Each server processes its share of q to produce a share of the
desired response, which it returns to the client

• The client combines the response shares to get the complete
response

3-58

The database as a matrix
• Most PIR protocols will model the database D as a matrix

• For example, a matrix with r rows, each of length s bytes
• The i th row of the matrix is the i th record of the database

D =


Sealing assembly for . . .
Adjustable-backset . . .
Conical recreational . . .
Method of swinging . . .
Cover for the rails . . .
Golf ball delivery . . .


• If you write your query like this: q = [0 0 0 1 0 0]
then what is q · D?

3-59

A simple PIR protocol

• A very simple PIR protocol (from the original PIR paper due to
Chor et al.):

• n servers each have a copy of D

• The client writes their query q as ei (a vector of all 0s except a 1
in position i)

• The client XOR-shares q into n shares to get q1, . . . , qn where
q1 ⊕ · · · ⊕ qn = q, sends qj to server j for each j = 1, . . . , n

3-60

A simple PIR protocol
• Server j computes its answer aj = qj · D

• qj will be a vector of length r of random bits (0 or 1)
• aj = qj · D is just saying “for each index i where the i th entry of qj is 1,

XOR those records of D together to get aj”

• Server j sends aj back to the client

• The client computes a = a1 ⊕ · · · ⊕ an

• How much data is transmitted?
• qj has length r bits, aj has length s bytes, there are n servers, so the

client sends nr bits and receives ns bytes
• n⌈ r

8
⌉+ ns is (likely) a lot smaller than rs (the size of the whole database)

3-61

Properties of this protocol

• Expressibility: (index) PIR

• Minimum number of parties: n ≥ 2 servers

• Threat model: semi-honest

• Maximum number of adversarial parties: n − 1

• Performance (r records of size s):
• Local computation: O(n(r + s)) client, O(rs) per server
• Total communication: n(⌈ r

8
⌉+ s)

• Latencies: 2

3-62

Extensions

• There are many ways to extend and improve this simple PIR
protocol

• Some examples:
• Batching (reducing computation)
• Threat model
• Robustness
• Reducing communication

3-63

Reducing computation with batching

• To answer a query, the servers have to do some computation over
the entire database
• If they ignore some record, then that record was definitely not the query

• But it turns out to answer lots of queries (say m) at the same
time, the servers can do o(mrs) work
• We assume m is much smaller than r and s

• Two cases:
• A single client making lots of queries
• Lots of clients making one query each

3-64

Batch codes

• In the first case, you have a single client who wants to look up a
lot of queries at the same time

• We won’t go into the details here, but one technique is batch
codes

• Rather than encoding the queries as q = [0 0 0 1 0 0] for
example, the client uses better encodings

• In one variant, for example, the servers only have to do
O(m0.415rs) work
• But the response size is much larger, at m2s (instead of ms)

3-65

Independent clients

• Batch codes only work if a single client can encode lots of queries
in a clever manner

• If you have lots of independent clients, they’re each going to
submit their query as if they were the only one

• But the server can still save computation!

3-66

Independent clients

• Recall that each server j is computing aj = qj · D

• If m queries q
(1)
j , . . . , q

(m)
j come in at the same time, stack them

into a matrix Qj
• Each row of Qj is one of the queries

Qj =


q
(1)
j

q
(2)
j
...

q
(m)
j



3-67

Independent clients

• Recall that each server j is computing aj = qj · D

• If m queries q
(1)
j , . . . , q

(m)
j come in at the same time, stack them

into a matrix Qj
• Each row of Qj is one of the queries

Qj · D =


q
(1)
j

q
(2)
j
...

q
(m)
j

 · D

3-68

Independent clients

• Recall that each server j is computing aj = qj · D

• If m queries q
(1)
j , . . . , q

(m)
j come in at the same time, stack them

into a matrix Qj
• Each row of Qj is one of the queries

Qj · D =


q
(1)
j

q
(2)
j
...

q
(m)
j

 · D =


a
(1)
j

a
(2)
j
...

a
(m)
j



3-69

Independent clients

• It takes O(rs) work to multiply a 1× r vector by an r × s matrix

• But you can multiply an m × r matrix by an r × s matrix in less
than m times that cost

• O(m0.81rs) is easy, lower numbers are theoretically possible

• Also: no expansion of response size

3-70

Threat model and robustness

• The presented protocol used XOR sharing

• Excellent resistance to collusion (up to n − 1), but the protocol
completely fails if even one server refuses to answer, or
(intentionally) gives an incorrect response

• You can fix this by using different secret sharing
• e.g., t-of-n Shamir secret sharing
• Then you can handle both servers that fail to respond and malicious

servers that give incorrect responses
• But the resistance to collusion goes down to t − 1

3-71

Reducing communication

• Another way to improve this protocol is to reduce the amount of
communication
• Query size or response size or both
• Sometimes this increases the computation cost, so there’s a tradeoff

• Recall the (non-private) query q = [0 0 0 1 0 0]

• One can consider q(i) (the i th element of q) to be a “point
function”: a function that’s 0 everywhere except in one position
• Since q is a bit vector, that position necessarily is a 1

3-72

Point functions

• A point function is a function that is non-zero at exactly one input:

pa,b(i) =

{
0 i ̸= a

b i = a

• For a binary point function, the outputs are all either 0 or 1, so b
must be 1

• For a general point function, b can be any (non-zero) valid output

3-73

Distributed point functions

• An (n, t)-distributed point function (DPF) is a way to construct n
secret shares of a point function so that:

• Any t shares can be used to reconstruct the original point function pa,b

• Any t − 1 shares cannot be used to learn a or b (unless you know b = 1
because it’s a binary DPF)

• One way to do it we’ve already seen: write the point function as a
vector of its outputs q = [0 0 0 1 0 0] and secret share that
vector
• But the problem we wanted to address is that, if there are r possible

inputs, this vector (and its shares) is of length r , which could be very large

3-74

(2,2)-DPFs
• We’re going to look at the simplest case: (2,2)-DPFs

• There are two shares, and neither share alone can reveal a (or b if not
binary)

• API: Gen(r , a, b)→ (key0, key1)
• Given the size of the set of possible inputs r , a target input a (with

0 ≤ a < r) and a target output b, produce a pair of DPF keys. Send keyβ
to server β for β ∈ {0, 1}

• Note: we will want the sizes of key0 and key1 to be smaller than r

• API: Eval(β, keyβ, i)→ v iβ
• Server β uses keyβ to evaluate its share of the DPF at input i , yielding v i

β,
which should reveal nothing about a or b

3-75

(2,2)-DPFs

API: Gen(r , a, b)→ (key0, key1)
API: Eval(β, keyβ, i)→ v iβ

• Property: for each i , v i0 ⊕ v i1 = pa,b(i)

• That is, for i ̸= a, v i0 = v i1, and for i = a, v i0 ⊕ v i1 = b

• How do we implement Gen and Eval?
• Strategy: visualize all possible inputs i to Eval as a binary tree

• Note: you won’t actually construct this binary tree at any point!

3-76

(2,2)-DPFs
sϵ0 sϵ1

s00 s10 s01 s11

s000 s010 s100 s110 s001 s011 s101 s111

s0000 s0010 s0100 s0110 s1000 s1010 s1100 s1110 s0001 s0011 s0101 s0111 s1001 s1011 s1101 s1111

v000
0 v001

0 v010
0 v011

0 v100
0 v101

0 v110
0 v111

0 v000
1 v001

1 v010
1 v011

1 v100
1 v101

1 v110
1 v111

1

cw1

cw2

cw3

fcw

3-77

(2,2)-DPFs
sϵ0 sϵ1

s00 s10 s01 s11

s000 s010 s100 s110 s001 s011 s101 s111

s0000 s0010 s0100 s0110 s1000 s1010 s1100 s1110 s0001 s0011 s0101 s0111 s1001 s1011 s1101 s1111

cw1

cw2

cw3

3-78

(2,2)-DPFs
sϵ0 sϵ1

s00 s10 s01 s11

s000 s010 s100 s110 s001 s011 s101 s111

s0000 s0010 s0100 s0110 s1000 s1010 s1100 s1110 s0001 s0011 s0101 s0111 s1001 s1011 s1101 s1111

cw1

cw2

cw3

• key0 = (s0 = sϵ0, cw1, cw2, cw3) key1 = (s1 = sϵ1, cw1, cw2, cw3)

• Each cwk = (sck , fc
0
k , fc

1
k)

3-79

DPF nodes
sϵ0 sϵ1

• Each node in the (again, notional) DPF tree has:
• A seed (typically around 128 bits)
• A flag bit (one bit)

• We will denote the seed for server β at the node with prefix α by
sαβ

• We will denote the flag bit for a node by a thick outline if the flag
bit is 1, and a thin outline if it is 0

3-80

Children of DPF nodes
sϵ0 sϵ1

s00 s10 s01 s11

• To get the seeds and flag bits for the children of a given parent
node:
• Use the seed of the parent node as the input to a PRG. Treat the output

of the PRG as (left seed, left flag, right seed, right flag); these will all be
random values

3-81

Children of DPF nodes
sϵ0 sϵ1

s00 s10 s01 s11

cwk

• To get the seeds and flag bits for the children of a given parent
node:
• Use the seed of the parent node as the input to a PRG. Treat the output

of the PRG as (left seed, left flag, right seed, right flag); these will all be
random values

• If the parent’s flag bit is 1: XOR sck into both children’s seeds, XOR
fc0k into the left child’s flag bit, XOR fc1k into the right child’s flag bit

3-82

Children of DPF nodes
sϵ0 sϵ1

s00 s10 s01 s11

(sck , fc
0
k , fc

1
k)

• To get the seeds and flag bits for the children of a given parent
node:
• Use the seed of the parent node as the input to a PRG. Treat the output

of the PRG as (left seed, left flag, right seed, right flag); these will all be
random values

• If the parent’s flag bit is 1: XOR sck into both children’s seeds, XOR
fc0k into the left child’s flag bit, XOR fc1k into the right child’s flag bit

3-83

Children of DPF nodes
sϵ0 sϵ1

s00 s10 s01 s11

(sck , fc
0
k , fc

1
k)

• To get the seeds and flag bits for the children of a given parent
node:
• Use the seed of the parent node as the input to a PRG. Treat the output

of the PRG as (left seed, left flag, right seed, right flag); these will all be
random values

• If the parent’s flag bit is 1: XOR sck into both children’s seeds, XOR
fc0k into the left child’s flag bit, XOR fc1k into the right child’s flag bit

• In this case, sck = PRG (sϵ0)[left seed]⊕ PRG (sϵ1)[left seed],
fc0k = PRG (sϵ0)[left flag]⊕ PRG (sϵ1)[left flag],
fc1k = PRG (sϵ0)[right flag]⊕ PRG (sϵ1)[right flag]⊕ 1

3-84

The DPF trees
sϵ0 sϵ1

s00 s10 s01 s11

s000 s010 s100 s110 s001 s011 s101 s111

s0000 s0010 s0100 s0110 s1000 s1010 s1100 s1110 s0001 s0011 s0101 s0111 s1001 s1011 s1101 s1111

cw1

cw2

cw3

• Invariant: each node on the path leading to the target index a has
a different seed and a different flag in the two trees; each node
not on this path has the same seed and flag in the two trees

3-85

The DPF trees
sϵ0 sϵ1

s00 s10 s01 s11

s000 s010 s100 s110 s001 s011 s101 s111

s0000 s0010 s0100 s0110 s1000 s1010 s1100 s1110 s0001 s0011 s0101 s0111 s1001 s1011 s1101 s1111

cw1

cw2

cw3

• For a binary DPF, we’re done: look at the flag bits at the leaves;
they are identical except for the target index
• So Eval(β, keyβ, i) is just the flag bit at leaf i

3-86

The DPF trees
sϵ0 sϵ1

s00 s10 s01 s11

s000 s010 s100 s110 s001 s011 s101 s111

s0000 s0010 s0100 s0110 s1000 s1010 s1100 s1110 s0001 s0011 s0101 s0111 s1001 s1011 s1101 s1111

cw1

cw2

cw3

• And remember, when computing Eval(β, keyβ, i), you only
compute the seeds and flags on the path from the root to i , and
not any others

3-87

The DPF trees
sϵ0 sϵ1

s00 s10 s01 s11

s000 s010 s100 s110 s001 s011 s101 s111

s0000 s0010 s0100 s0110 s1000 s1010 s1100 s1110 s0001 s0011 s0101 s0111 s1001 s1011 s1101 s1111

cw1

cw2

cw3

• For non-binary DPFs, two extra steps: first, hash the seed you end
up with into however large an output you need, then, if the flag
bit is 1, XOR that with a final correction word

3-88

Non-binary DPF trees
sϵ0 sϵ1

s00 s10 s01 s11

s000 s010 s100 s110 s001 s011 s101 s111

s0000 s0010 s0100 s0110 s1000 s1010 s1100 s1110 s0001 s0011 s0101 s0111 s1001 s1011 s1101 s1111

v000
0 v001

0 v010
0 v011

0 v100
0 v101

0 v110
0 v111

0 v000
1 v001

1 v010
1 v011

1 v100
1 v101

1 v110
1 v111

1

cw1

cw2

cw3

fcw

3-89

Properties of this protocol

• Expressibility: (index) PIR

• Minimum number of parties: 2 servers

• Threat model: semi-honest

• Maximum number of adversarial parties: 1

• Performance (r records of size s):
• Local computation: O(s + lg r) client, O(rs) per server
• Total communication: [Assignment 2]
• Latencies: 2

3-90

Keyword PIR
• Up to now, we have assumed that the client knows the exact
database index of the record they’re looking for
• For something like patent numbers, where the number could itself just be

the index, that might be OK

• But in general, a (keyword, value) store is much more useful
• Sometimes called a (key, value) store, but “key” of course already has a

different meaning in privacy / cryptography

• The database is a collection of (keyword, value) pairs

• The client has a keyword, and wants to look up the associated
value without revealing the keyword
• Or be told that no such value exists

3-91

Keyword PIR

• One technique is to put the values in an index-PIR database (as
before), and then have a separate mechanism (which could be
based on PIR accesses into a binary search tree, for example) to
look up the correct index for a given keyword

• This will require multiple communication rounds and additional
computation, however

• Using DPFs, we can achieve keyword PIR with almost the same
performance as index PIR

3-92

The two hashes
• For each (keyword, value) pair in the database, hash the keyword
in two ways:
• A regular hash; e.g., SHA2-256 with a 32-byte output
• A truncated hash which is the first d bits of the regular hash

• d is chosen so that no two keywords have the same truncated
hash
• If the keywords in the database can be chosen adversarially, choose

d = 256 (i.e., use the whole hash, not truncated)
• Otherwise, choosing d = 2⌈lg r⌉ (where r is the number of keywords in

the database) is typically fine

• Notation: for a keyword w , H(w) will be the full hash, Hd(w) will
be the hash truncated to the first d bits

3-93

One more notation

• For any (keyword, value) pair (w , v) in the database, let

V (w) = H(w)∥v

• That is, V (w) is (the 32-byte hash of the keyword) concatenated
with (the value)

• So if values are s bytes long, V (w) will be 32 + s bytes long

3-94

Converting DPF-based index PIR to keyword PIR

Client Server β

Gen(r , i , 1) → (key0, key1)

aβ =
⊕

j∈{0,...,r−1}
Eval(β,keyβ ,j)=1

D[j]

a = a0 ⊕ a1

3-95

Converting DPF-based index PIR to keyword PIR

Client Server β

Gen(2d ,Hd(w), 1) → (key0, key1)

aβ =
⊕

j∈{0,...,r−1}
Eval(β,keyβ ,j)=1

D[j]

a = a0 ⊕ a1

3-96

Converting DPF-based index PIR to keyword PIR

Client Server β

Gen(2d ,Hd(w), 1) → (key0, key1)

aβ =
⊕

w∈keywords
Eval(β,keyβ ,Hd(w))=1

V (w)

a = a0 ⊕ a1

3-97

Converting DPF-based index PIR to keyword PIR

Client Server β

Gen(2d ,Hd(w), 1) → (key0, key1)

aβ =
⊕

w∈keywords
Eval(β,keyβ ,Hd(w))=1

V (w)

a = a0 ⊕ a1
Check a starts with H(w)

3-98

Properties of this protocol

• Expressibility: keyword PIR

• Minimum number of parties: 2 servers

• Threat model: semi-honest

• Maximum number of adversarial parties: 1

• Performance (r records of size s):
• Local computation: O(s + lg r) client, O(rs) per server
• Total communication: [Assignment 2]
• Latencies: 2

3-99

Private Set Intersection (PSI)
• Another multiparty protocol to compute a specific function is
private set intersection (PSI)

• In its simplest form, there are two parties, the receiver and the
sender

• Each party has a set of elements
• Numbers, strings, IP addresses, whatever

• The goal is for the receiver to learn which elements the two parties
have in common
• Both parties can learn (a bound on) the size of each other’s sets
• The sender learns nothing else

3-100

Uses of PSI

• Google and Mastercard: what users bought something they saw in
a Google ad?

• Messaging apps: which of your friends are already users of this
app?

• Contact tracing: what places I have visited have had a reported
COVID exposure?

3-101

Variants

• PSI Cardinality
• The receiver only learns the number of items in common
• More generally, compute some function of the intersection

• Unbalanced PSI: the sender or receiver has a much larger set than
the other
• Large sender set: messaging app example
• Large receiver set: contact tracing example

• Private Set Union (Cardinality)
• Find the (number of) users a set of services have in total, without

double-counting people that use multiple services

3-102

Comparison of PIR and PSI

• If the receiver has only one element, and the sender has a
database of elements, PSI is a little bit like keyword PIR

• But in keyword PIR, the client is allowed to learn information
about other entries in the database, and in PSI, the receiver is not
• Symmetric PIR (SPIR)

• The database in PSI is held by one party
• The PIR protocols we’ve seen so far require at least two (non-colluding)

parties to hold copies of the database
• But we’ll see single-party PIR protocols in future modules

3-103

A simple but broken PSI protocol

• Let the sender’s set be S = {s1, s2, . . . , sm} and the receiver’s set
be R = {r1, r2, . . . , rn}

• The sender computes hashes of its elements
H(s1),H(s2), . . . ,H(sm) and sends them to the receiver

• The receiver hashes its own elements and looks for matches

• Why is this insecure?

3-104

A simple PSI protocol
• The sender hashes their elements to points in a group:
P1 = Hp(s1),P2 = Hp(s2), . . . ,Pm = Hp(sm)

• The receiver does the same:
Q1 = Hp(r1),Q2 = Hp(r2), . . . ,Qn = Hp(rn)

• The receiver picks a random scalar a and sends to the sender:
a·Q1, a·Q2, . . . , a·Qn

• The sender picks a random scalar b and sends to the receiver:
b ·P1, b ·P2, . . . , b ·Pm and H(ba·Q1),H(ba·Q2), . . . ,H(ba·Qn)

• The receiver computes H(ab ·P1),H(ab ·P2), . . . ,H(ab ·Pm) and
finds the values in common

• Why do we not have the same problem as before?

3-105

A simple PSI protocol
• The sender hashes their elements to points in a group:
P1 = Hp(s1),P2 = Hp(s2), . . . ,Pm = Hp(sm)

• The receiver does the same:
Q1 = Hp(r1),Q2 = Hp(r2), . . . ,Qn = Hp(rn)

• The receiver picks a random scalar a and sends to the sender:
a·Q1, a·Q2, . . . , a·Qn

• The sender picks a random scalar b and sends to the receiver:
b ·P1, b ·P2, . . . , b ·Pm and H(ba·Q1),H(ba·Q2), . . . ,H(ba·Qn)

• The receiver computes H(ab ·P1),H(ab ·P2), . . . ,H(ab ·Pm) and
finds the values in common

• Why do we not have the same problem as before?

3-106

Properties of this protocol

• Expressibility: balanced PSI

• Minimum number of parties: 2 servers

• Threat model: semi-honest

• Maximum number of adversarial parties: 1

• Performance (sender has m elements, receiver has n):
• Local computation: O(m + n)
• Total communication: 32m+64n bytes
• Latencies: 2

3-107

Secret sharing without reconstruction

• In Module 2, we saw how to share a secret (say a private key)
using Shamir secret sharing
• Prevents the secret from sitting on a single computer, which would then

be vulnerable

• We also saw how to reconstruct the secret using Lagrange
interpolation so that it can be used (say to sign a message)
• But once the secret is reconstructed, it’s vulnerable again!

• Better: be able to use the shared private key to sign a message
without reconstructing it!
• Key idea: use shares of the key to produce shares of the signature, and

only reconstruct the signature, not the key

3-108

Schnorr signatures

m, a A = a·B

3-109

Schnorr signatures

m, a A = a·B

r ← $
R ← r ·B

c ← H(R ,A,m)
z ← r + c · a

3-110

Schnorr signatures

m, a A = a·B

r ← $
R ← r ·B

c ← H(R ,A,m)
z ← r + c · a

m, σ = (R , z)

3-111

Schnorr signatures

m, a A = a·B

r ← $
R ← r ·B

c ← H(R ,A,m)
z ← r + c · a

m, σ = (R , z)

c ← H(R ,A,m)

z ·B ?
= R + c ·A

3-112

Threshold Schnorr signatures

m, sn

m, s1

m, s3
BP

m, s2
A = a·B

m, σ = (R , z)

c ← H(R ,A,m)

z ·B ?
= R + c ·A

3-113

Two-Round threshold Schnorr signatures

sn

s1

s3

BP

s2

3-114

Two-Round threshold Schnorr signatures

sn

s1

s3

BP

s2
r1 ← $

R1 ← r1 ·B

r2 ← $
R2 ← r2 ·B

r3 ← $
R3 ← r3 ·B

rn ← $
Rn ← rn ·B

3-115

Two-Round threshold Schnorr signatures

sn

s1

s3

BP

s2
r1 ← $

R1 ← r1 ·B

r2 ← $
R2 ← r2 ·B

r3 ← $
R3 ← r3 ·B

rn ← $
Rn ← rn ·B

R1

R2

R3

3-116

Two-Round threshold Schnorr signatures

sn

s1

s3

BP

s2

R1

R2

R3
R =

∑
Ri

3-117

Two-Round threshold Schnorr signatures

sn

s1

s3

BP

s2

R =
∑

Ri

R ,m

R ,m

R ,m

3-118

Two-Round threshold Schnorr signatures

sn

s1

s3

BP

s2

R ,m

R ,m

R ,m

c ← H(R ,A,m)
z1 ← r1 + λ1 ·c ·s1

c ← H(R ,A,m)
z2 ← r2 + λ2 ·c ·s2

c ← H(R ,A,m)
z3 ← r3 + λ3 ·c ·s3

c ← H(R ,A,m)
zn ← rn + λn ·c ·sn

3-119

Two-Round threshold Schnorr signatures

sn

s1

s3

BP

s2
c ← H(R ,A,m)
z1 ← r1 + λ1 ·c ·s1

c ← H(R ,A,m)
z2 ← r2 + λ2 ·c ·s2

c ← H(R ,A,m)
z3 ← r3 + λ3 ·c ·s3

c ← H(R ,A,m)
zn ← rn + λn ·c ·sn

z1

z2

z3

3-120

Two-Round threshold Schnorr signatures

sn

s1

s3

BP

s2

z1

z2

z3
z ←

∑
zi

σ = (R , z)

3-121

Problem: parallel composition

3-122

FROST

sn

s1

s3

BP

s2

3-123

FROST

sn

s1

s3

BP

s2
d1, e1 ← $
D1 ← d1 ·B
E1 ← e1 ·B

d2, e2 ← $
D2 ← d2 ·B
E2 ← e2 ·B

d3, e3 ← $
D3 ← d3 ·B
E3 ← e3 ·B

dn, en ← $
Dn ← dn ·B
En ← en ·B

3-124

FROST

sn

s1

s3

BP

s2
d1, e1 ← $
D1 ← d1 ·B
E1 ← e1 ·B

d2, e2 ← $
D2 ← d2 ·B
E2 ← e2 ·B

d3, e3 ← $
D3 ← d3 ·B
E3 ← e3 ·B

dn, en ← $
Dn ← dn ·B
En ← en ·B

D1,E1

D2,E2

D3,E3

3-125

FROST

sn

s1

s3

BP

s2

D1,E1

D2,E2

D3,E3
L← ⟨(D1,E1),
(D2,E2), . . . ⟩

3-126

FROST

sn

s1

s3

BP

s2

L← ⟨(D1,E1),
(D2,E2), . . . ⟩

L,m

L,m

L,m

3-127

FROST

sn

s1

s3

BP

s2

L,m

L,m

L,m
ρi ← Hρ(A,H(m),

H(L), i)

R ←
∑

(Di + ρi ·Ei)

c ← H(R ,A,m)

3-128

FROST

sn

s1

s3

BP

s2

L,m

L,m

L,m

z1 ← d1 + ρ1 ·e1 + λ1 ·c ·s1

z2 ← d2 + ρ2 ·e2 + λ2 ·c ·s2

z3 ← d3 + ρ3 ·e3 + λ3 ·c ·s3

zn ← dn + ρn ·en + λn ·c ·sn

3-129

FROST

sn

s1

s3

BP

s2

z1 ← d1 + ρ1 ·e1 + λ1 ·c ·s1

z2 ← d2 + ρ2 ·e2 + λ2 ·c ·s2

z3 ← d3 + ρ3 ·e3 + λ3 ·c ·s3

zn ← dn + ρn ·en + λn ·c ·sn

z1

z2

z3

3-130

FROST

sn

s1

s3

BP

s2

z1

z2

z3
z ←

∑
zi

σ = (R , z)

3-131

Properties of this protocol

• Expressibility: threshold Schnorr signatures

• Minimum number of parties: n ≥ t

• Threat model: malicious

• Maximum number of adversarial parties: t − 1

• Performance:
• Local computation: O(t + |m|) per party
• Total communication: 64t bytes preproc + (64t + |m|+ 32)t bytes
• Latencies: 1 preproc + 2

