
CS 798
Privacy in Computation and Communication

Module 5
Privacy in Computation: Homomorphic Encryption

Spring 2024



5-2

Homomorphic encryption

Recall the three main ways to achieve privacy in computation:

• Distributed trust

• Trusted hardware

• Homomorphic encryption



5-3

Homomorphic encryption

Recall the three main ways to achieve privacy in computation:

• Distributed trust

• Trusted hardware

• Homomorphic encryption



5-4

Motivation

• With distributed trust, the privacy and security relied on parties
not colluding

• With trusted hardware, the privacy and security relied on the lack
of side channels in the software and hardware implementations of
the programs running in the TEEs, and the TEEs themselves

• With homomorphic encryption, we aim to rely on the hardness of
certain mathematical problems

• We will not be talking about the details of these problems in this course,
but just the APIs to take advantage of them



5-5

Recall: the group API

• Two data types: scalars and points

• A group is a set of points (with certain properties)

• There is one operation you can do to combine two points; this
operation yields another point

• P + Q → R

• There are two special points
• The identity O and the basepoint B
• P +O = P for any point P



5-6

The ring API
• In this module, we will go beyond groups, to rings

• Just one data type: elements
• We’ll usually write elements with lowercase letters

• Two operations that can combine two elements
• a + b → r
• a · b → s

• Various (intuitive) rules about the operations
• e.g., r · (a + b) = r · a + r · b for any elements r , a, b

• Two special elements: 0, 1
• r + 0 = r , r · 1 = r , r · 0 = 0 for any element r



5-7

Examples of rings

• The integers (Z)

• The integers mod n (Zn)
• Even if n is not prime!

• Polynomials with coefficients in another ring
• e.g., in Z10[x ]:

(3x2 + 7x + 4) + (5x2 + 4x + 8) = 8x2 + x + 2

(3x2 + 7x + 4) · (5x2 + 4x + 8) = 5x4 + 7x3 + 2x2 + 2x + 2



5-8

Examples of rings

• Polynomials of degree less than some fixed N

• If you add two polynomials of degree less than N , you get another
such polynomial for sure

• But if you multiply two polynomials of degree less than N , you
might get a polynomial of degree N or higher

• So you need a technique for degree reduction
• Remember we saw something similar in Module 3?



5-9

Degree reduction

• The way we went from Z (an infinite ring) to Zn (a finite ring)
was to take the remainder when we divide by n

• 4 · 7 = 28 = 2 · 10 + 8, so 4 · 7 = 8 in Z10

• We do the same with polynomials: take the remainder when we do
(polynomial) division by a degree-N polynomial

• e.g., in Z10[x ], take the remainder when we divide by the
polynomial xN + 1

• We write the resulting ring as Z10[x]
(xN+1)



5-10

Example

• Use the same polynomials as for the previous example, but now in
Z10[x ]
(x3+1)

• (3x2 + 7x + 4) · (5x2 + 4x + 8) = 5x4 + 7x3 + 2x2 + 2x + 2

= (5x + 7)(x3 + 1) + (2x2 + 7x + 5) in Z10[x ]

• So (3x2 + 7x + 4) · (5x2 + 4x + 8) = 2x2 + 7x + 5 in Z10[x ]
(x3+1)



5-11

What are homomorphisms?

• We said back in Module 2 that group commitments are
homomorphic

• Com(x) = xB
• Com(x + y) = (x + y)B = xB + yB = Com(x) + Com(y)

• A homomorphism is a function (e.g., “Com”) that preserves
structure

• e.g., if x + y = z , then Com(x) + Com(y) = Com(z)

• Recall that sometimes we write groups additively and sometimes we write
groups multiplicatively, so the way we write this structure may change;
e.g., we may write Com(x) = g x and then:

if x + y = z , then Com(x) · Com(y) = Com(z)



5-12

What are homomorphisms?

• So if we’re given Com(x) and Com(y), we can compute
Com(x + y) by ourselves, without knowing x and y

• In some cases, we may need some additional (public) information
like a public key; more on that in a bit



5-13

Homomorphic encryption

• Homomorphic encryption is then simply where the encryption
function is homomorphic:

• For example, given Enc(x) and Enc(y), and possibly other public
information, you can compute Enc(x + y) without knowing the
decryption key or learning x or y

• Note that you may not literally add Enc(x) and Enc(y) to get Enc(x + y)
• There’s just some public operation you can do to get Enc(x + y)



5-14

Computation using homomorphic encryption

Enc(x)

Enc(y)

Enc(b)

−

∗

+ Enc(z)

• The strategy is very similar to previous modules

• Write the program as a circuit

• Each gate processes encrypted inputs to yield the encrypted
output without being able to decrypt



5-15

Computation using homomorphic encryption

Enc(x)

Enc(y)

Enc(b)

−

∗

+ Enc(z)

• As usual, linear gates (+, −) are easier than non-linear (∗)
• Computing the output of gates may require knowledge of the
public encryption key and/or other public parameters



5-16

Computation using homomorphic encryption

Enc(x)

Enc(y)

Enc(b)

−

∗

+ Enc(z)

• As was the case in Module 3, the multiplicative depth of this
circuit plays a crucial role



5-17

Types of homomorphic encryption
• Homomorphic encryption has been around since the 1970s, but
only in a limited form

• In this most basic form of homomorphic encryption (now called
“partially homomorphic encryption”), given Enc(x) and Enc(y),
you can compute Enc(x · y) but not Enc(x + y) (multiplicative
homomorphic encryption)

• e.g., Textbook RSA, textbook El Gamal

• In other schemes, it’s the other way around: given Enc(x) and
Enc(y), you can compute Enc(x + y) but not Enc(x · y) (additive
homomorphic encryption)

• e.g., Exponential El Gamal, Pailler



5-18

Types of homomorphic encryption
• In the mid-2000s, we saw homomorphic encryption schemes that
could do both addition and multiplication, but were limited to a
multiplicative depth of just 1

• e.g., BGN
• Dot products
• Euclidean (squared) distances

• The limit to the multiplicative depth is based on how the math
works

• It’s not a parameter to the system

• These schemes (for any fixed multiplicative depth) are now called
“somewhat homomorphic encryption”



5-19

Types of homomorphic encryption

• Breakthrough in 2009: Craig Gentry introduced the first fully
homomorphic encryption scheme

• Can process any circuit homomorphically

• We will break the process into two steps



5-20

Levelled homomorphic encryption

• The first step is levelled homomorphic encryption

• Here, we can handle circuits of multiplicative depth at most d
• e.g, BFV, BGV, FHEW, CKKS

• But now d is a parameter you can set freely when creating, for
example, your private and public keys

• Larger d will mean larger keys

• This may be all you need, if you know the program you want to
evaluate on your encrypted data in advance (and so know its
multiplicative depth, and it’s not huge)



5-21

Multiplicative depth

• Why is d limited?

• “Noise”

• In systems like these, (extended) plaintexts are large, but only a
little bit is “useful” data

• The useful data is the actual (non-extended) plaintext

• Extended plaintexts start off with only a little bit of noise
• Some noise is needed for security

x data 0 noise



5-22

Noise

• Adding two ciphertexts:
• That is, performing the public operation that computes Enc(x + y) from

Enc(x) and Enc(y), not necessarily literally adding the ciphertexts

x data 0 noise

y data 0 noise

x+y data 0 noise

• The noise increases just a tiny bit



5-23

Noise

• Multiplying two ciphertexts:
• That is, performing the public operation that computes Enc(x · y) from

Enc(x) and Enc(y), not necessarily literally multiplying the ciphertexts

x data 0 noise

y data 0 noise

x · y data 0 noise

• The noise increases quite a bit



5-24

Noise

• So the multiplicative depth is what governs how much noise there
is

• To allow for a multiplicative depth of d , you make the extended
plaintexts large enough to accommodate that much noise

• What if you exceed that depth?

data noise



5-25

Recap so far

Client Server
x YR = P(x ,Y )

sk , pk , params
[pk , params, ] E (x)

E (x)

Y
E (R)

E (R)

R mult depth ≤ d



5-26

Handling circuits with large multiplicative depth

• What can we do if the circuit for the program P has large
multiplicative depth?

• The first thing to do is to try to reduce the multiplicative depth of
the circuit

• For example (actually quite common in practice), suppose you
have k ciphertexts you want to multiply together

• Again, we technically mean here that you want to end up with a ciphertext
whose plaintext is the product of the k plaintexts for the given ciphetexts

• Not that you’re literally multiplying together the ciphertexts



5-27

Multiplying k ciphertexts

R = C[0]

for i = 1, 2, ..., k-1:

R = Mult(R, C[i])

return R

C[0]
C[1]
C[2]
C[3]
C[4]
C[5]
C[6]
C[7]
C[8]
C[9]

*
*

*
*

*
*

*
*

*

What is the multiplicative depth?



5-28

Multiplying k ciphertexts

C[0]
C[1]
C[2]
C[3]
C[4]
C[5]
C[6]
C[7]
C[8]
C[9]

*

*

*

*

*

*

*

*

*

What is the multiplicative depth?



5-29

What if it’s still large?

• After you’ve reduced the multiplicative depth of the circuit as
much as you can, the depth might still be quite large

• In theory, you can just set the maximum depth for the levelled
encryption scheme as high as you like

• But then each operation will become extremely slow and
expensive!



5-30

Breaking the computation into chunks

• The next approach is to divide up the program P (or its circuit)
into smaller chunks, each of which has small multiplicative depth

V0

V1

R



5-31

Chunked computation

Client Server[pk , params, ] E (x)

E (V0),
E (V1)

E (V0),E (V1)

D(E (V0)),D(E (V1))
E (D(E (V0))),E (D(E (V1)))

E (R)
E (R)

R = D(E (R))



5-32

Chunked computation

Client Server[pk , params, ] E (x)

E (V0),
E (V1)

E (V0),E (V1)

D(E (V0)),D(E (V1))
E (D(E (V0))),E (D(E (V1)))

E (R)
E (R)

R = D(E (R))

High noise

No noise

Low noise



5-33

Fully homomorphic encryption

• The second part of Gentry’s work was to find a levelled
homomorphic encryption system that was capable of bootstrapping

• Levelled homomorphic encryption + bootstrapping =
fully homomorphic encryption (FHE)

• With FHE, you can compute any circuit on encrypted data
without being able to decrypt it

• Noninteractively



5-34

Removing the interaction

• The purpose of the interaction was because the server had a
ciphertext E (V ) (of an intermediate value V ) with high noise

• The result of computing a chunk of the circuit with the maximum
multiplicative depth d

• The server needs a fresh encryption (of the same value V ) with
low noise

• So that it can use it in the next chunk of the circuit

• The way to remove noise is decryption
• But the client has the decryption key (sk) and the server does not



5-35

Removing the interaction

• Let’s write the secret (private) key and public key explicitly:

• The server has a ciphertext C = Epk(V ) with high noise, sends
that to the client

• The client has the secret key sk and computes Dsk(C ), which
equals V (removing the noise)

• The client re-encrypts the result with pk to yield Epk(Dsk(C )),
which is Epk(V ), but with low noise



5-36

Removing the interaction

• The reason we did the interaction is that the server has C , and
wants to compute Epk(Dsk(C )), but only the client knows sk

• Key observation: Dsk(C ) is just a program with two inputs: sk is
known by the client, and C is known by the server

• Recall: for a program P (of multiplicative depth at most d),
• If the client has input x and the server has input Y ,
• then the client sends Epk(x) to the server,
• and the server can compute Epk(P(x ,Y ))



5-37

Removing the interaction

• The reason we did the interaction is that the server has C , and
wants to compute Epk(Dsk(C )), but only the client knows sk

• Key observation: Dsk(C ) is just a program with two inputs: sk is
known by the client, and C is known by the server

• Recall: for a program D (of multiplicative depth at most d),
• If the client has input sk and the server has input C ,
• then the client sends Epk(sk) to the server,
• and the server can compute Epk(Dsk(C ))



5-38

Bootstrapping

Client Serverpk , params,E (x)

E (V0), E (V1)

D D

E (D(E (V0))) E (D(E (V1)))

E (R)
E (R)

R = D(E (R))

E (sk)



5-39

Bootstrapping

Client Serverpk , params,E (x)

E (V0), E (V1)

D D

E (D(E (V0))) E (D(E (V1)))

E (R)
E (R)

R = D(E (R))

E (sk)

High noise

Medium noise



5-40

Bootstrapping

• Bootstrapping works when the decryption circuit for a levelled
homomorphic encryption scheme (with maximum multiplicative
depth d) itself has multiplicative depth less than d

• Say d = 20, and the decryption circuit has multiplicative depth 12
• Then the first chunk can be of multiplicative depth 20
• The result of that chunk is treated as a plaintext input to the decryption

circuit
• The output of the decryption circuit will have had depth 12

multiplications already
• The next chunk can be of multiplicative depth 8 before you have to

decrypt again
⇒ What happens after that?



5-41

Bootstrapping

• What did we do here?

• We evaluated the plaintext reconstruction function using the
private computation mechanism itself in order to get a “clean”
(lower-noise) encryption of a value

• Where have we seen this technique before?



5-42

Bootstrapping



5-43

Using homomorphic encryption

• As usual, we won’t be talking about how homomorphic encryption
works “on the inside”

• But we will talk about how to use it (the API)

• Not the API for a specific library, but in general
• You will be using a specific library (openfhe) on Assignment 3
• But even there, the exact API differs a bit between the C++, Python,

and Rust versions



5-44

Setup

• Start by choosing what homomorphic encryption scheme you’re
going to use

• e.g, BFV, BGV, FHEW, CKKS

• Libraries like openfhe and others support multiple schemes

• Do you need only levelled homomorphic encryption, or do you
need bootstrapping (FHE) as well?

• As a running example, we will use the BFV levelled homomorphic scheme,
without bootstrapping

• Also sometimes called “B/FV” or just “FV”
• This is what you’ll be using on Assignment 3



5-45

Choosing scheme parameters
• The next step is to choose the parameters of the scheme that you
want

• You’re likely to choose the maximum multiplicative depth d
• Remember that the larger d is, the larger your ciphertexts are, and the

slower your operations are, so keep d as small as your intended circuits
permit

• Count the depth of the multiplication gates in your circuit carefully!

• In some schemes (like BFV), you will also choose the plaintext
modulus n

• Plaintexts (in the simple case, but more on this soon) are integers mod n
• So kind of like scalars in the group API, but here, n is typically pretty

small (65537 is a common value)



5-46

Key generation

• Then you’ll generate your public/private key pair

• As usual, the public key is for encrypting plaintexts to form
ciphertexts, and the private key is for decrypting ciphertexts to
recover plaintexts



5-47

Public parameters

• You will also generate the public parameters we’ve talked about
before

• For example, in order for a server to multiply two ciphertexts, it
needs a “multiplication key” given to it as part of the public
parameter set

• If you want to enable bootstrapping, then Epk(sk) will be part of
the public parameters

• The scheme parameters you chose earlier will also be part of the
public parameters



5-48

Serialization

• Not specific to homomorphic encryption, but any multi-party
protocol will need a way to turn objects in memory (e.g., private
keys, public keys, ciphertexts, public parameters) into sequences of
bytes so that they can be stored for later use or sent to another
party (serialization)

• Turning the sequences of bytes back into their corresponding
objects is deserialization



5-49

Client-side operations

• On the client side, there will be operations for:

• Constructing plaintexts from data
• More on this in a bit

• Using the public key to encrypt plaintexts

• Using the private key to decrypt ciphertexts

• Extracting data from plaintexts



5-50

Server-side operations

• On the server side, there will be operations for:

• Add, subtract, multiply ciphertexts by ciphertexts

• Add, subtract, multiply ciphertexts by plaintexts

• (If needed) perform bootstrapping

• Other useful operations can often be built using these basic
functions



5-51

What are the plaintexts?

• Since there are operations on ciphertexts that result in adding,
subtracting, and multiplying the corresponding plaintexts, the
plaintexts must form a ring

• A finite ring, of course

• So at minimum, it’s Zn for some n
• If n = 2, then you’re just encoding single bits, and the homomorphic

operations will be XOR and AND

• As we saw before, for BFV for example, you can choose your
values of n when you set up the scheme (but n must have certain
properties)

• 65537 is a common choice



5-52

Plaintext packing

• So the simplest thing to do is just have each plaintext be (in this
example) an integer in the range 0, 1, . . . , 65536

• However, ciphertexts can be quite large (more than 1MB), and it
could be a bit wasteful to only put about 2 bytes of useful data in
there

• Homomorphic encryption schemes like BFV allow you to do
plaintext packing: bundle multiple (typically thousands of) Zn

values together into a single ciphertext



5-53

Plaintext packing

• In BFV, plaintexts are actually not just Zn

• They are polynomials of degree less than N , whose coefficients are
in Zn

• This is the ring Zn[x ]
(xN+1) we saw earlier

• For example, with n = 65537 and N = 16384, you can put 16384 values,
each in Z65537, into a single plaintext

• But if you don’t want to do that, you can just use elements of Zn,
which are really polynomials of degree 0

• They have a constant term in Zn, but all the other coefficients are 0



5-54

Plaintext packing

• There are actually two different ways to pack multiple Zn values
into a single plaintext

• They differ in what happens when you multiply the plaintexts
together, and what kinds of operations (in addition to addition,
subtraction, and multiplication) you can do homomorphically



5-55

Polynomial packing
• In the first method, the Zn values are the coefficients of the
plaintext polynomial in Zn[x ]

(xN+1)

• Suppose one ciphertext encrypts the values 2, 5, 4, and a second
ciphertext encrypts 3, 1, 8

• Then the corresponding plaintexts are the polynomials
2 + 5x + 4x2 and 3 + x + 8x2

• If the server adds the ciphertexts, it results in an encryption of
5 + 6x + 12x2

• So just adding the corresponding plaintext entries
• Similar for subtraction



5-56

Polynomial packing

• If the server multiplies the ciphertexts, the result is the
multiplication of the plaintexts as polynomials

• So the resulting ciphertext would be an encryption of

(2 + 5x + 4x2)(3 + x + 8x2) = 6 + 17x + 33x2 + 44x3 + 32x4

• If the product has degree N or more, then it also does degree
reduction, as discussed earlier



5-57

Operations with polynomial packing

• In addition to addition, subtraction, and multiplication, there are a
couple of other operations the server can do on ciphertexts when
polynomial packing is used

• The first looks weird, and doesn’t seem very useful on its own, but
is used to construct the second, which is extremely useful



5-58

Substitution

• The first additional homomorphic operation (when using
polynomial packing) is substitution

• This operation takes a ciphertext encrypting a polynomial f (x)
and turns it into a ciphertext encrypting the polynomial f (x r) for
some r

• In the common case of N being a power of 2, r can be any odd integer

• For example, a ciphertext encrypting 2 + 5x + 4x2 can be turned
into a ciphertext encrypting 2 + 5x3 + 4x6 (by choosing r = 3)



5-59

Expansion

• As mentioned, this doesn’t seem immediately useful. But it’s the
key ingredient to building homomorphic expansion

• This operation takes a ciphertext encrypting a polynomial f (x) of
degree k − 1 and turns it into k ciphertexts, each encrypting one
of the coefficients of f (x)

• For example, a ciphertext encrypting 2 + 5x + 4x2 can be turned
into three ciphertexts, encrypting 2, 5, and 4, respectively

• But: ⌈lg k⌉ multiplicative depth



5-60

Vector packing

• The other way to pack multiple Zn values into one plaintext is as
a vector

• Technically, the elements of the vector are evaluations of the

plaintext polynomial in Zn[x ]
(xN+1) , but that’s an “inside” detail that’s

not exposed to the API



5-61

Vector packing

• Suppose one ciphertext encrypts the values [2, 5, 4], and a second
ciphertext encrypts [3, 1, 8]

• If the server adds the ciphertexts, it results in an encryption of
[5, 6, 12]

• So just adding the corresponding plaintext entries, just like polynomial
packing

• Similar for subtraction

• If the server multiplies the ciphertexts, it results in an encryption of
[6, 5, 32]

• Element-wise multiplication
• Often easier to deal with than polynomial packing



5-62

Vector packing

• The vectors are actually of length N/2 (so thousands of entries
long), but most of the entries are 0 if you’re not using them

• The actual length of the vector becomes important, however,
when you do the additional homomorphic operation available with
vector packing: vector rotation



5-63

Vector rotation

• Vector rotation is a homomorphic operation that, given a
ciphertext encrypting a certain vector, produces a ciphertext that
encrypts that vector, rotated by r positions to the left, for any
chosen r

• For example, given a ciphertext that encrypts the vector [2, 5, 4],
the server can perform the homomorphic vector rotation operation
to yield a ciphertext that is an encryption of the vector:

• For r = −1: [0, 2, 5, 4]
• For r = −2: [0, 0, 2, 5, 4]
• For r = 1: [5, 4, 0, . . . , 0, 2]
• For r = 2: [4, 0, . . . , 0, 2, 5]



5-64

PIR using homomorphic encryption

• We will next look at how to implement PIR in the single-server
setting, without trusted hardware, using homomorphic encryption

• This is a quite active research area!

• Some recent protocols include Spiral, SimplePIR, DoublePIR,
FrodoPIR

• We will only look at the details of the simplest HE-based PIR
protocols



5-65

The database as a matrix
Recall from Module 3:

• Most PIR protocols will model the database D as a matrix
• For example, a matrix with r rows, each of length s bytes
• The i th row of the matrix is the i th record of the database

D =


Sealing assembly for . . .
Adjustable-backset . . .
Conical recreational . . .
Method of swinging . . .
Cover for the rails . . .
Golf ball delivery . . .


• If you write your query like this: q = [ 0 0 0 1 0 0 ]
then what is q · D?



5-66

The database as a matrix

• In Module 3, we wrote the database as a matrix of r rows, where
each row was one s-byte record

• We will do something very similar here, only instead of the rows
being s bytes, they will be some number of plaintexts

• Let w be the number of bytes you can fit into one plaintext
• This will depend on n, N , and whether you use polynomial or vector

packing
• For example, if n = 65537, N = 16384, and polynomial packing, then

w = 32768



5-67

The database as a matrix

• Then the database matrix will be much as before: r rows, each
row being ⌈ s

w ⌉ plaintexts

D =


Sealing assembly for . . .
Adjustable-backset . . .
Conical recreational . . .
Method of swinging . . .
Cover for the rails . . .
Golf ball delivery . . .

 =


p0,0 p0,1 · · · p0,8
p1,0 p1,1 · · · p1,8
p2,0 p2,1 · · · p2,8
p3,0 p3,1 · · · p3,8
p4,0 p4,1 · · · p4,8
p5,0 p5,1 · · · p5,8





5-68

The database as a matrix

• Since w is somewhat large, it may be that s < w , so each row
only has a single plaintext, and the database is actually just a
column vector of plaintexts

D =


p0
p1
p2
p3
p4
p5





5-69

The most basic HE-based PIR scheme
• Remember that if q = [ 0 0 0 1 0 0 ], then q ·D is just the desired
row of the database

• So the client constructs this query vector, and encrypts each
element: E (q) = [ E (0) E (0) E (0) E (1) E (0) E (0) ]

• Important: the instances of E (0) aren’t just literal copies of each other!
They’re separately encrypted values

• Send this vector of ciphertexts to the server (along with public
parameters)

• You could also use plaintext packing to pack many of the entries (mostly
0’s and maybe the single 1) into single plaintexts before encryption

• The server would then extract them back into individual ciphertexts
before proceeding



5-70

The most basic HE-based PIR scheme

• The server now has E (q) = [ E (0) E (0) E (0) E (1) E (0) E (0) ]
and D (and the public parameters that allow it to do
homomorphic operations)

• The server now just computes E (q) · D, where the multiplications
are between ciphertexts and plaintexts, and the additions are of
ciphertexts

• Because of the homomorphic property, E (q) · D = E (q · D)

• The server sends this back to the client, who decrypts it



5-71

The most basic HE-based PIR scheme

E (q) = [ E (0) E (0) E (0) E (1) E (0) E (0) ]

D =


p0
p1
p2
p3
p4
p5


E (q) ·D = E (0) ·p0+E (0) ·p1+E (0) ·p2+E (1) ·p3+E (0) ·p4+E (0) ·p5

= E (p3)



5-72

The most basic HE-based PIR scheme

• What is the multiplicative depth of this scheme?

• How much data is sent from the client to the server?

• How much data is sent from the server to the client?



5-73

PIR from equality tests
• The previous scheme sends a lot of data

• We’ll next look at a way to send significantly less

• Suppose Eq(Q, y) is a function that takes as input a ciphertext
vector Q (encrypting a number x represented in some fashion)
and an unencrypted number y

• Simple option: if x written in binary is 010011, then Q might be
[E (1),E (1),E (0),E (0),E (1),E (0)]

• There are other options

• Eq(Q, y) outputs a ciphertext: it is an encryption of 1 if x = y
and an encryption of 0 otherwise



5-74

PIR from equality tests

• To do PIR, the client has the index x it wants to look up, and
produces the corresponding encrypted Q

• The client sends Q (and the public parameters, etc.) to the server

• The server computes R =
r−1∑
y=0

Eq(Q, y) · Dy , where Dy is row y of

the database matrix, and sends R back to the client

• The client decrypts R to reconstruct the desired row of the
database matrix



5-75

Keyword PIR from equality tests

• To do PIR, the client has the keyword x it wants to look up, and
produces the corresponding encrypted Q

• The client sends Q (and the public parameters, etc.) to the server

• The server computes R =
∑

y∈keywords

Eq(Q, y) · Dy , where Dy is the value

associated with the keyword y , and sends R back to the client

• The client decrypts R to reconstruct the desired row of the
database matrix



5-76

Implementing the equality test

• How do you implement Eq(Q, y)?

• It depends on how you created Q, given x

• For example, you may do it using the “simple option” we talked
about before (write x in binary, and entry i of the vector Q is an
encryption of bit i of x , where bit 0 is the least significant bit)

• Then Eq(Q, y) =
∏
yi=0

(1− Qi)
∏
yi=1

Qi , where yi is bit i of y



5-77

Implementing the equality test

• What is the multiplicative depth of Eq(Q, y) using this simple
option of creating Q?

• What is the resulting multiplicative depth of the PIR scheme?

• How much data is sent from the client to the server?

• How much data is sent from the server to the client?



5-78

Constant-weight codewords

• There are better options for turning a value x into a ciphertext
vector Q, however

• On Assignment 3, you will explore using constant-weight
codewords

• General idea: before, we just wrote x in binary, and encrypted
each bit to get the elements of Q

• Now: write x using just 0’s and 1’s, but in a special way: given a
parameter k , then for every x , you write it so that there are
exactly k 1’s (and the rest are 0’s)



5-79

Constant-weight codewords

x cw Q
0 1 1 0 0 0 [E(1), E(1), E(0), E(0), E(0)]
1 1 0 1 0 0 [E(1), E(0), E(1), E(0), E(0)]
2 0 1 1 0 0 [E(0), E(1), E(1), E(0), E(0)]
3 1 0 0 1 0 [E(1), E(0), E(0), E(1), E(0)]
4 0 1 0 1 0 [E(0), E(1), E(0), E(1), E(0)]
5 0 0 1 1 0 [E(0), E(0), E(1), E(1), E(0)]
6 1 0 0 0 1 [E(1), E(0), E(0), E(0), E(1)]
7 0 1 0 0 1 [E(0), E(1), E(0), E(0), E(1)]
8 0 0 1 0 1 [E(0), E(0), E(1), E(0), E(1)]
9 0 0 0 1 1 [E(0), E(0), E(0), E(1), E(1)]



5-80

Constant-weight codewords

• Since we know Q will have exactly k elements that will be
encryptions of 1 (and the rest will be encryptions of 0), the

equality test is much simpler: Eq(Q, y) =
∏

cw(y)i=1

Qi

• What is the multiplicative depth of Eq(Q, y) using this simple
option of creating Q?

• What is the resulting multiplicative depth of the PIR scheme?

• How much data is sent from the client to the server?

• How much data is sent from the server to the client?


