
CS 798
Privacy in Computation and Communication

Module 4
Privacy in Computation: Trusted Hardware

Spring 2024



4-2

Trusted hardware

Recall the three main ways to achieve privacy in computation:

• Distributed trust

• Trusted hardware

• Homomorphic encryption



4-3

Trusted hardware

Recall the three main ways to achieve privacy in computation:

• Distributed trust

• Trusted hardware

• Homomorphic encryption



4-4

Motivation

• Maybe you would be OK with sending your private data to a
central computer for processing if. . .

• you could be assured exactly what processing will be done

• your data could not be stored or processed except for the above

• no person (or machine) would be able to see your data or any derivative
data except for the above

• . . . maybe?



4-5

Trusted hardware

• Have a trusted part of a computer that can execute (possibly a
small bit of) code in a way that can’t be interfered with by the
rest of the computer
• “Trusted Execution Environment” (TEE)
• Remember what “trusted” means in security!

• Technologies like these date back over 25 years

• Many hardware manufacturers have a version of this
• Intel SGX, ARM TrustZone, AMD SEV, etc.



4-6

Threat model

• The details vary from system to system, but typically:

• A user should be able to communicate with a program running on a
remote computer. . .

• with assurance as to what program is running. . .

• and that even someone controlling the remote operating system cannot
see the data the program is receiving, processing, or sending

• Outside the threat model:
• Opening up the physical CPU package (though some systems may do

their best to destroy any secrets if physical tampering is detected)
• Availability, metadata



4-7

Intel SGX

• We’ll use Intel SGX as a running example of a trusted hardware
system, but others are similar
• Our example will use Linux as the OS

• Supported by server-class (Xeon) processors, but not (most)
client-class Intel processors

• There are a couple of variants (e.g., SGX1, SGX2); we won’t
worry about the distinctions

• Note: the client does not need a CPU with SGX support!



4-8

Enclaves

• On the server side, SGX-enabled programs have two parts:

• The untrusted application code
• This is just a normal Linux program: it can take input from the command

line, terminal, Internet sockets, whatever
• In the threat model, this code is assumed to be malicious

• The trusted code running in an enclave
• The untrusted code can interact with the enclave through APIs the

enclave defines, but cannot see the data “inside” the enclave
• The enclave cannot perform any system calls at all!



4-9

Enclaves

• Enclaves have memory assigned to them

• This memory is encrypted by the CPU
• Remember how AES is implemented in hardware in modern CPUs?

• Not even a malicious operating system can read the contents of
this memory

• But it can see what memory addresses are being accessed
⇒ The metadata



4-10

Attestation

• Enclaves can create public/private key pairs

• There is a procedure called remote attestation that allows a client
to verify that a particular public key was created by an enclave on
a remote machine running a particular piece of trusted code

• Then the client can use that public key to communicate with the
enclave with confidentiality, integrity, and authenticity
• Even though the communication goes through the untrusted application



4-11

Attacks on SGX

• There have been a number of attacks on the security of SGX in
the past

• Some (e.g., SgxPectre, Foreshadow) violate the SGX (and indeed
the CPU) threat model, and Intel issues patches to fix them

• Others (e.g., MemBuster, TeeJam) do not violate the SGX threat
model, and enclave authors are on their own to mitigate them
• These typically use side channels to reveal to the (malicious) operating

system things like memory addresses being accessed, or the sequence of
instructions being executed



4-12

Mitigating side channels

• Some data is public
• e.g., the size of the input

• Some data is private
• e.g., data collected from users

• When you write a program to be run in an enclave, you need to
ensure that there are no side channels that can leak private data



4-13

Mitigating side channels

• Some data is public
• e.g., the size of the input

• Some data is private
• e.g., data collected from users

• When you write a program to be run in an enclave, you need to
ensure that there are no side channels that can leak private data



4-14

Mitigating side channels

• The big ones:

• Instruction sequences

• Addresses of memory accesses

• These must not depend on any private data!

• So loops where the loop bounds are the size of the input are fine

• But loops where the loop bounds depend on the user data are not



4-15

Oblivious algorithms

• In the trusted hardware setting, a program that, for a given set of
public data (e.g., the size of the input), always:
• executes the same sequence of instructions, and
• accesses the same memory addresses for every read and write

is a (fully) oblivious algorithm

• Note that the values written to or read from memory are allowed
to depend on the private data
• The memory encryption will protect those



4-16

Oblivious algorithms

• How do oblivious algorithms in the trusted hardware setting
compare to those in the distributed trust setting?

• In the distributed trust setting, the parties have no knowledge of
the private data, so they cannot behave in a way that accidentally
reveals it

• In the trusted hardware setting, the enclave does see the private
data, so it’s actually pretty easy to slip up and accidentally create
a side channel that reveals it
• The programmer has to be much more careful
• The compiler may even slip you up, even if you were careful!



4-17

Oblivious conditionals

• If you have an if/then/else with the branch test involving private
data, how do you make that oblivious?

• The basic idea is the same as in the distributed trust setting:
• Execute both branches
• Use an oblivious multiplexer to choose which result to keep and which to

throw away

• You’ll of course want to write your code to minimize the number
of such conditional branches (with private conditions) in the first
place!



4-18

Oblivious multiplexers

• How do you implement the oblivious multiplexer?
• You might think just, e.g., y = b ? x1 : x0;

• The above is not guaranteed to be oblivious!
• The compiler may decide to put a conditional branch in there, or it may

not, or it may depend on the optimization level, or the compiler version,
or any number of things

• You may need to resort to inline assembly, particularly the cmov
instruction family



4-19

Oblivious multiplexers

• For example:

y = b ? x1 : x0;

becomes

mov %[x0], %[y]

test %[b], %[b]

cmovnz %[x1], %[y]

• This version is oblivious



4-20

Oblivious multiplexers

• For example:

y = b ? x1 : x0;

becomes

mov %[x0], %[y] y ← x0
test %[b], %[b] Test if b is 0
cmovnz %[x1], %[y] y ← x1 if b ̸= 0

• This version is oblivious



4-21

Oblivious memory manipulation

• The previous slide looked at data in registers. What about
memory?

• There are two cases:
• You want to maybe (depending on private data) update a variable in

memory at a public address

• You want to maybe (depending on private data) update a variable in
memory at an address that itself depends on private data

• We’ll look at the first (easier) case now, and the second (much
harder) case later in the module



4-22

Oblivious swaps
• Example: there are two blocks of data in memory at public
addresses (and sizes)

• The contents of the blocks are private

• You have a private control bit, and you want to swap the contents
of the blocks of memory if the bit is 1, and not change memory if
the bit is 0
• But you have to do this obliviously, so that the adversarial OS can’t even

tell whether the control bit was 1 or 0

• This is an oblivious swap, which is a key component of many
oblivious data manipulation algorithms, such as oblivious sorting
(coming soon in this module)



4-23

Oblivious swaps

• The first thing to notice is that if you’re trying to obliviously swap
x and y, each of say 200 bytes, based on the control bit b, then
you can do it in chunks:

oswap(x, y, b, 200):

oswap 8bytes(x, y, b)

oswap 8bytes(x+8, y+8, b)

oswap 8bytes(x+16, y+16, b)

...

oswap 8bytes(x+192, y+192, b)



4-24

Oblivious swaps

• The first thing to notice is that if you’re trying to obliviously swap
x and y, each of say 200 bytes, based on the control bit b, then
you can do it in chunks:

oswap(x, y, b, 200):

for (i=0; i<200; i+=8):

oswap 8bytes(x+i, y+i, b)



4-25

Oblivious swaps

• Then for each 8 bytes, the strategy is:
• Read both 8-byte memory locations into registers
• Use cmov to obliviously swap the registers, depending on the control bit b
• Write both registers back to memory

test %[b], %[b]

mov (%[y]), %r10

mov (%[y]), %r11

mov (%[x]), %r12

cmovnz %r12, %r10

cmovnz %r11, %r12

mov %r10, (%[y])

mov %r12, (%[x])



4-26

Oblivious swaps

• Ideally, you’d have a library that implements this for you, of course

• Then you just have to call the appropriate oblivious functions when
you want to do memory manipulations depending on private data

• Note the performance cost (will be important later): each 8 bytes
executes a constant number of instructions, so to obliviously swap
two buffers of size β bytes takes O(β) time



4-27

Oblivious data analysis

• Consider the example of privacy preserving telemetry: a hardware
or software maker (say Google) wants to collect statistical
information about how often users use certain features, how often
crashes happen, what websites are commonly visited, etc.

• Importantly, this statistical information is independent of the
identities of the users
• It doesn’t matter which user’s browser crashed; you’re just counting how

many crashes happened, for example



4-28

Oblivious data analysis

• When collecting this data, an important first step is to break the
connection between the data and the user that submitted it
• You want to do this in a way that the users can be assured that their

usage patterns aren’t linked to their identities / accounts

• Strategy: have users submit their data encrypted into a TEE,
which shuffles the submissions in a large batch so that no one can
tell which user submitted which data once it comes out of the TEE

• Google’s Prochlo system does this, for example



4-29

Oblivious shuffles and sorts

• But remember that to be secure against a potentially malicious
operating system, this shuffling must be done obliviously
• An adversary who compromises the OS, watching what memory addresses

are being read and written to, should not be able to tell which outputs of
the shuffle corresponded to which inputs

• So we need to use algorithms for oblivious shuffles

• Similarly, sometimes we need to be able to do oblivious sorts, so
that we do not reveal which input item ended up at each output
location after the sort
• Applications to private database joins, privacy preserving federated

learning, and more



4-30

Oblivious shuffles and sorts

• Oblivious shuffles and sorts are closely related

• If you have an algorithm for oblivious sorts, you can make an
oblivious shuffle with just a little extra work:

• For each item in the array you want to shuffle, prepend a random sorting
key

• Obliviously sort the items on those sorting keys

• Throw away the sorting keys



4-31

Oblivious shuffles and sorts

• If you have an algorithm for oblivious shuffles, you can make an
oblivious sort with some extra work:

• Obliviously shuffle the input data; then use any non-oblivious sorting
algorithm (quicksort, heapsort, whatever) to sort the result

• The oblivious shuffle breaks the link between the input and output data
items, so even if the adversary can tell which inputs to the quicksort (for
example) ended up at which output, they learn nothing about which
original inputs (before the shuffle) they were

• This is called the “Scramble-then-Compute” paradigm



4-32

Sorting networks

• A sorting network is a way to do oblivious sorting

https://en.wikipedia.org/wiki/Bitonic sorter

• Each arrow is an oblivious swap, with the control bit set so that
the larger element ends up at the head of the arrow

https://en.wikipedia.org/wiki/Bitonic_sorter


4-33

Sorting networks

• A sorting network is a way to do oblivious sorting

https://en.wikipedia.org/wiki/Bitonic sorter

• Each oblivious swap operates on a predetermined pair of the
inputs, independent of the data

https://en.wikipedia.org/wiki/Bitonic_sorter


4-34

Sorting networks

• A sorting network is a way to do oblivious sorting

https://en.wikipedia.org/wiki/Bitonic sorter

• Cost to bitonic sort n items of size β:
n
4(lg

2 n + lg n) oblivious swaps of size β

https://en.wikipedia.org/wiki/Bitonic_sorter


4-35

Oblivious compaction
• Aside: another useful subroutine for oblivious data processing is
oblivious compaction

• For processing a subset of data without revealing what subset

• You start with an array of data items, some of which are “marked”

• The operation is to move the marked items to the beginning of
the array (preserving their order)
• The unmarked items go after, in any order

3 1 4 1 5 9 2 6
⇓

1 9 6 4 1 3 2 5



4-36

Oblivious compaction

• Cost:

• Traditionally use Goodrich’s algorithm (2011): around n(lg n − 2)
oblivious swaps of size β

• Newer: Sasy et al.’s Oblivious Recursive Compaction
(ORCompact, 2022): n

2 lg n oblivious swaps of size β



4-37

Oblivious expansion

• If you run an oblivious compaction algorithm “backwards”
(perform the oblivious swaps in the reverse order), you get an
oblivious expansion algorithm:

1 9 6 4 1 3 2 5
1 5 7 -1 -1 -1 -1 -1

⇓
3 1 4 1 5 9 2 6

• Cost: same as oblivious compaction



4-38

ORShuffle

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3



4-39

ORShuffle

MarkHalf

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3



4-40

ORShuffle

MarkHalf + ORCompact

3 1 1 9 3 8 9 9 3 7 5 6 4 5 2 5



4-41

ORShuffle

MarkHalf + ORCompact + Recurse Left and Right = ORShuffle

9 9 8 3 3 1 9 1 5 5 6 4 2 5 7 3



4-42

ORShuffle

• ORShuffle cost: n
4(lg

2 n + lg n) oblivious swaps of size β

• Compare Bitonic sort with random labels: n
4(lg

2 n + lg n) oblivious
swaps of size β + sizeof(label)

• For small items, ORShuffle is 2× faster; for large items, only very
slightly faster



4-43

Permutation networks

• A permutation network is similar to a sorting network:

• A fixed set of oblivious swaps each operating on two predetermined items,
each with a control bit

• But: a permutation network can apply any desired permutation to
the input items, not just the particular permutation that sorts
them

• A permutation network has significantly fewer oblivious swaps
than a sorting network



4-44

Permutation networks

• Recall that in a sorting network, the control bits are set
automatically by comparing the two items in order to make the
larger item end up at the “head of the arrow”

• In a permutation network, the control bits need to be set by a
separate algorithm that takes as input the desired permutation



4-45

Permutation networks

Using a permutation network therefore typically has three phases:

• Determine the permutation you want

• Given that permutation, determine what the control bits should be

• Apply the permutation by executing the oblivious swaps with
those control bits



4-46

Waksman networks

• A Waksman network is the most common type of permutation
network



4-47

Waksman networks

• A Waksman network is the most common type of permutation
network

6
2
3
7
5
1
8
0
4

0
1
2
3
4
5
6
7
8



4-48

Waksman networks

• A Waksman network on n inputs has approximately n lg n − n + 1
oblivious swaps
• Exactly this number when n is a power of 2

• Compare bitonic sorting network: n
4(lg

2 n + lg n) oblivious swaps
• A factor of more than 1

4
lg n more than a Waksman network



4-49

Determining the permutation

• The first of the three phases is to determine what permutation
you want to apply to your data items

• We’ll use the example of sorting for now

• Given an array of data items, what permutation do you need to
apply to put them in sorted order?

• We’ll assume each data item is large (size β), but has a small
sorting key
• Transaction id, userid, something like that



4-50

Determining the permutation

271 828 182 845 904 523 536 28

• Copy the (small) sorting keys into an array

• Attach the original positions in the array to each item



4-51

Determining the permutation

271 828 182 845 904 523 536 28
0 1 2 3 4 5 6 7

• Copy the (small) sorting keys into an array

• Attach the original positions in the array to each item



4-52

Determining the permutation

28 182 271 523 536 828 845 904
7 2 0 5 6 1 3 4

• Copy the (small) sorting keys into an array

• Attach the original positions in the array to each item

• Obliviously sort the array

• The position markers that came along with the sort indicate the
desired permutation

• Original item 7 is destined for position 0
• Original item 2 is destined for position 1
• etc.



4-53

Determining the permutation

7 2 0 5 6 1 3 4

• Copy the (small) sorting keys into an array

• Attach the original positions in the array to each item

• Obliviously sort the array

• The position markers that came along with the sort indicate the
desired permutation
• Original item 7 is destined for position 0
• Original item 2 is destined for position 1
• etc.



4-54

Determining the permutation

7 2 0 5 6 1 3 4

• Copy the (small) sorting keys into an array

• Attach the original positions in the array to each item

• Obliviously sort the array

• The position markers that came along with the sort indicate the
desired permutation
• Original item 7 is destined for position 0
• Original item 2 is destined for position 1
• etc.



4-55

Determining the permutation

• What if we wanted to shuffle the data items instead of sorting
them?

• Just use a uniformly random permutation:
• Initialize an array with 0, 1, 2, . . . n − 1
• Obliviously shuffle the array



4-56

Setting the control bits

• There are a number of algorithms for the second phase: setting
the control bits of a Waksman network to a desired permutation

• Caveat: you need to implement the control bit setting algorithm
itself obliviously!
• The adversary controlling the OS and watching all memory accesses must

not be able to determine what the permutation is or what the resulting
control bits are

• Cost: you can obliviously set the control bits of a Waksman
network for a given permutation in O(n lg3 n) time



4-57

Setting the control bits

• Note: if you want to set the Waksman network to a uniform
random permutation (for shuffling), you cannot just set each
control bit uniformly at random!

• This does not yield a uniform random permutation

• There are n! possible permutations, and the number of ways to set
k control bits is 2k , so it is not possible that each permutation
results from the same number of settings of the control bits



4-58

Applying the permutation

• The third phase is easy: given the control bits, applying the
permutation is just performing the oblivious swaps in the order
specified by the Waksman network layout

• To apply a Waksman network on n items of size β, the cost is
O(βn lg n)



4-59

Runtime

• Observe that the cost of phases 1 and 2 together are O(n lg3 n),
while phase 3 is O(βn lg n)

• Note there is no β in the phase 1 and 2 cost!

• Also note that if you know the permutation before you receive the
data, you can perform phases 1 and 2 as a preprocessing phase
• This is always true when shuffling (a known number of items), for example



4-60

Runtime
Shuffling Preproccessing Online

Bitonic shuffle O(βn lg2 n)
WaksShuffle O(n lg3 n) O(βn lg n)

Sorting Preprocessing Online

Bitonic sort O(βn lg2 n)
WaksSort O(n lg3 n) +O(βn lg n)
WaksShuffle + QS O(n lg3 n) O(βn lg n)

• WaksShuffle (+ QS) always better in online time than Bitonic

• WaksSort, WaksShuffle better in total time when β = ω(lg n)
(concretely, β > 1400B for a wide range of values of n)



4-61

Accessing memory at private addresses

• Now we move on to the harder case: your algorithm (running in a
TEE) needs to access memory (say an element of an array) where
the address is itself private
• Look up a user’s account information without revealing which user it is,

for example

• You should not even reveal if two accesses were to the same or
different array elements / addresses



4-62

Linear scan

• If the array is small, a simple linear scan is likely the best way

• Read every element of the array one at a time (from the start to
the end of the array), obliviously keeping a copy (using cmov for
example) of only the record you’re actually looking for

• For writing, read every element one at a time into a buffer,
obliviously modify the buffer if it’s the item you’re interested in
(cmov again), and write it back to the array

• Cost (n items of size β): O(βn) per oblivious read or write
operation



4-63

Oblivious RAMs

• If n is large, linear scan will perform very poorly

• The typical solution is to use Oblivious RAMs (ORAMs)

• Originally designed for the client-server setting:
• Client outsources data storage to a server
• Client can read and write blocks of storage on the server by specifying a

block address
• Client wants to run an algorithm that accesses blocks as a RAM, without

the server learning what blocks are being read or written
⇒ The address of any given block must change every time the block is

accessed



4-64

Oblivious RAMs

• There are n data blocks, each with an id number from 0 to n − 1,
and each of size β

• Blocks stored on the server can be real blocks (one of the n data
blocks) or dummy blocks

• Blocks stored on the server are encrypted
• The server cannot tell the id number or contents of any given block, or

even if the block is a real or dummy block



4-65

Comparing ORAMs and PIR

ORAM PIR

Operations Read / write Read only

Server computation O(β lg n) O(βn)

Number of clients 1 unlimited

• ORAMs are limited to one client because the blocks are
encrypted, and only one client can know the encryption key



4-66

Path ORAM

• A simple ORAM protocol is called Path ORAM (Stefanov et al.,
2018)

• The server stores a binary tree of height L = ⌈lg n⌉ (level 0 is the
root, level L are the leaves)

• Each node in the tree is called a “bucket”, which stores Z blocks
(real or dummy, and the server does not know which)
• Typically Z = 4 or 5

• The client has a “stash” of up to O(lg n) blocks (not encrypted),
and a “position map”, which we’ll talk about soon



4-67

Path ORAM

...
...

...
...

Layer 0

Layer 1

Layer 2

Layer L

0 1 2 3 · · · 2L − 2 2L − 1

• The leaves are numbered consecutively

• The position map pos[·] on the client maps block ids to random
leaf numbers



4-68

Path ORAM

...
...

...
...

Layer 0

Layer 1

Layer 2

Layer L

0 1 2 3 · · · 2L − 2 2L − 1

• Invariant: if pos[a] = x, then block number a is either:
1. in the stash
2. somewhere on the path from the root to leaf x



4-69

Path ORAM
To access block a:

• Look up x = pos[a]; assign a new random value to pos[a]

• Download the path from the root to leaf x into the stash
• Downloading Z (L+ 1) blocks

• Find block a in the stash, updating it if the access is a write

• Write back (reencrypted) buckets from leaf x to the root, putting
as many real blocks as will fit and are allowed by the invariant into
each bucket
• If not all the real blocks can fit in the buckets, they stay in the stash
• Uploading Z (L+ 1) blocks



4-70

Client-server vs TEEs

• In the client-server setting, the server can see all accesses to its
storage, but cannot see the client’s local computation at all

• In the TEE setting, the adversarial OS can see all accesses to
memory, even those done by the client-side algorithm (running in
the TEE)

• So in the TEE setting, the “server” is just the untrusted OS, and
the “client” is running inside the TEE
• You need to write the client-side ORAM code itself in an oblivious

manner!



4-71

One more step

• The client code in the TEE will need to access the stash and the
position map obliviously

• The stash is pretty small (O(lg n) entries)
• Just use linear scan

• But the position map may be pretty large (n entries, but each is
just a small number)
• If the position map is not too large, linear scan is fine
• Otherwise, you want to be able to read and update the position map

without revealing which entry you’re reading and updating
⇒ Recursively use a smaller ORAM!



4-72

Building PIR from TEEs and ORAM

• Using a TEE-based ORAM (where the TEE is the single and only
client of the ORAM), we can build a multi-client single-server PIR
system for a database of r records of size s bytes each

• The server computation is only O(s lg r) per query, instead of
O(rs) for the PIR schemes we’ve seen so far



4-73

Building PIR from TEEs and ORAM

• Make each record in the PIR database be a block in the ORAM
• So n = r and β = s

• Clients (as many as you like) use remote attestation to establish a
secure channel to the enclave in the TEE
• Once per client, not once per PIR access

• The clients just send the record number they’re looking for over
the secure channel

• The ORAM client in the enclave looks up that block in the ORAM
and returns it to the client over the secure channel



4-74

Bonus: private writes

• As a bonus, this mechanism also allows clients to privately write
to the database at almost no extra cost:

• The client just sends (to the enclave in the TEE over the secure
channel) the new value of the record along with the record number

• The enclave does an ORAM write instead of an ORAM read



4-75

Questions

• Why does this construction implement PIR?
• Why can the server not tell which record is being accessed?
• Why can the server not tell whether two accesses (by the same or

different clients) are to the same record or different records?

• We said earlier that PIR schemes have to do O(rs) computation,
because they have to access every record in the database
• Otherwise, they learn that the client’s desired record was not one of the

untouched records
• Why is this construction able to do better (O(s lg r))?


