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Abstract

Unlike signatures in a single-party setting, threshold signatures require coop-
eration among a threshold number of signers each holding a share of a common
private key. Consequently, generating signatures in a threshold setting imposes
overhead due to network rounds among signers, proving costly when secret shares
are stored on network-limited devices or when coordination occurs over unreliable
networks. In this work, we present FROST, a Flexible Round-Optimized Schnorr
Threshold signature scheme that improves upon the state of the art to reduce net-
work overhead during signing operations. We introduce three variants of signing
operations in FROST. We begin with two variants that are limited in concurrency
but efficient in per-user computation; the first reduces the number of messages
participants send and receive to two in total, and the second variant is a further
optimization to a single-round signing protocol with a batched non-interactive pre-
processing stage. We next present a third variant that does not restrict concurrency
of signing operations but is more costly in per-signature computation. Across all
variants, FROST achieves its efficiency improvements by allowing the protocol
to abort in the presence of a misbehaving participant (who is then identified and
excluded from future operations)—a reasonable model for practical deployment
scenarios. We present two use cases of threshold signatures demonstrating the
practicality of this tradeoff to real-world implementations, and prove FROST is as
secure as Schnorr’s signature scheme in a single-party setting.

1 Introduction

Threshold signature schemes are a cryptographic primitive to facilitate joint ownership
over a private key by a set of participants, such that a threshold number of participants
must cooperate to issue a signature that can be verified by a single public key. Thresh-



old signatures are useful across a range of settings that require a distributed root of trust
among a set of equally trusted parties.

Similarly to signing operations in a single-party setting, some implementations of
threshold signature schemes require performing signing operations at scale and un-
der heavy load. For example, threshold signatures can be used by a set of signers to
authenticate financial transactions in cryptocurrencies [10], or to sign a network con-
sensus produced by a set of trusted authorities [13]. In both of these examples, as the
number of signing parties or signing operations increases, the number of communi-
cation rounds between participants required to produce the joint signature becomes a
performance bottleneck, in addition to the increased load experienced by each signer.
This problem is further exacerbated when signers utilize network-limited devices or
unreliable networks for transmission, or protocols that wish to allow signers to partici-
pate in signing operations asynchronously. As such, optimizing the network overhead
of signing operations is highly beneficial to real-world applications of threshold signa-
tures.

Today in the literature, the best threshold signature schemes are those that rely
on pairing-based cryptography [3, 2], and can perform signing operations in a single
round among participants. However, relying on pairing-based signature schemes is
undesirable for some implementations in practice, such as those that do not wish to
introduce a new cryptographic assumption, or that wish to maintain backwards com-
patibility with an existing signature scheme such as Schnorr signatures. Surprisingly,
today’s best non-pairing-based threshold schemes require multiple rounds of interac-
tion during signing operations. The best threshold signature constructions that produce
Schnorr signatures [20, 8] require at least three rounds of communication during sign-
ing operations: two rounds to generate a random nonce (where participants send values
to every other participant in each round) and one round to publish and aggregate each
participant’s signature share. Notably, these Schnorr-based schemes have assumed ro-
bustness as a critical protocol feature, such that if any participant misbehaves, honest
participants can detect this misbehaviour, disqualify the misbehaving participant, and
continue the protocol to produce a signature, so long as at least the threshold number
of honest parties remain.

In this work, we present FROST, a Flexible Round-Optimized Schnorr Threshold
signature scheme' that addresses the need for efficient threshold signing operations in
real-world settings. We present three variants of FROST, all of which improve upon the
state of the art to reduce network rounds among participants. We begin by presenting
two variants that are limited in concurrency but efficient in per-user computation; the
first is a two-round variant where participants send and receive two messages in total,
and the second is an optimization of the first, such that signing operations can be per-
formed in a single (non-broadcast) round with a batched non-interactive pre-processing
stage. We next present a third variant of FROST that requires more per-user compu-
tation but does not limit the parallelism of signing operations. In lieu of robustness,
FROST achieves improved efficiency in the optimistic case that no participant misbe-
haves. However, in the case where a misbehaving participant contributes malformed
values during the protocol, honest parties can identify and exclude the misbehaving

ISignatures generated using the FROST protocol can also be referred to as “"FROSTy signatures.”



participant, and re-run the protocol. We present two use cases of threshold signatures
demonstrating the practicality of this tradeoff to real-world settings.
Contributions. In this work, we present the following contributions.

- We review related Schnorr-based threshold signature schemes and present a de-
tailed analysis of their performance and designs.

- We discuss two use cases of threshold signatures to demonstrate practical trade-
offs between robustness and efficiency.

- We present FROST, a Flexible Round-Optimized Schnorr Threshold signature
scheme, and define three variants of the signing protocol, all improving upon
the state of the art to minimize network rounds during signing operations. The
first two variants provide limited concurrency but minimize per-user computation
during signing; the first variant is a two-round protocol where participants send
and receive two messages in total, and the second is an optimization to a single-
round variant with a batched non-interactive preprocessing stage. We introduce
a third variant that does not restrict concurrency but requires additional per-user
computation.

- We present proofs of security and correctness for FROST, building upon proofs
of security for prior related schemes.

Organization. We present background information important to understanding our
work in Section 2. In Section 3, we outline two use cases of threshold signatures
demonstrating that the strongest notions of robustness are not always required in real-
istic deployments of threshold schemes. In Section 4 we give an overview of related
threshold Schnorr signature constructions in the literature. In Section 5 we review no-
tation and security assumptions maintained for our work. In Section 6 we introduce
FROST and describe its protocols in detail. In Section 7 we give proofs of security and
correctness for FROST. We discuss future research directions for FROST in Section 8,
and conclude in Section 9.

2 Background

2.1 Threshold Schemes

Cryptographic protocols called (¢, n)-threshold schemes allow a set of n participants
to share a secret s, such that any ¢ out of the n participants are required to cooperate
in order to recover s, but any subset of fewer than ¢ participants cannot recover any
information about the secret.

Shamir Secret Sharing. Many threshold schemes build upon Shamir secret shar-
ing [19], a (¢,n)-threshold scheme that relies on Lagrange interpolation to recover a
secret. In Shamir secret sharing, a trusted central dealer distributes a secret s to n par-
ticipants in such a way that any cooperating subset of ¢ participants can recover the
secret. To distribute this secret, the dealer first selects t — 1 coefficients aq,...,a;_1 at
random, and uses the randomly selected values as coefficients to define a polynomial
flz)=s+ Zf;} a;x" of degree t — 1 where f(0) = s. The secret shares for each par-
ticipant P; are subsequently (4, f(¢)), which the dealer is trusted to distribute honestly



to each participant P, ..., P,. To reconstruct the secret, at least ¢ participants perform
Lagrange interpolation to reconstruct the polynomial and thus find the value s = f(0).
However, no group of fewer than ¢ participants can reconstruct the secret, as at least ¢
points are required to reconstruct a polynomial of degree ¢t — 1.

Verifiable Secret Sharing. Feldman’s Verifiable Secret Sharing (VSS) Scheme [6]
builds upon Shamir secret sharing, adding a verification step to demonstrate the consis-
tency of a participant’s share with a public commitment that is assumed to be correctly
visible to all participants. To validate that a share is well formed, each participant vali-
dates their share using this commitment. If the validation fails, the participant can issue
a complaint against the dealer, and take actions such as broadcasting this complaint to
all other participants. FROST similarly uses this technique as well.

The commitment produced in Feldman’s scheme is as follows. As before in Shamir
secret sharing, a dealer samples ¢ — 1 random values (ay,...,a;—1), and uses these
values as coefficients to define a polynomial f; of degree ¢ — 1 such that f(0) = s.
However, along with distributing the private share (¢, f(i)) to each participant P;, the
dealer also distributes the public commitment

C = (b0, - .., Pt—1), where ¢g = ¢g° and ¢; = g%

Note that in a distributed setting, each participant P; must be sure to have the same
view of C as all other participants. In practice, implementations guarantee consistency
of participants’ views by using techniques such as posting commitments to a central-
ized server that is trusted to provide a single view to all participants, or adding another
protocol round where participants compare their received commitment values to ensure
they are identical.

2.2 Threshold Signature Schemes

Threshold signature schemes leverage the (¢, n) security properties of threshold schemes,
but allow participants to produce signatures over a message using their secret shares
such that anyone can validate the integrity of the message, without ever reconstructing
the secret. In threshold signature schemes, the secret key s is distributed among the n
participants, while a single public key Y is used to represent the group. Signatures can
be generated by a threshold of ¢ cooperating signers.

For our work, we require the resulting signature produced by the threshold signa-
ture scheme to be valid under the Schnorr signature scheme [17]. We introduce Schnorr
signatures in Section 2.4.

Because threshold signature schemes ensure that no participant (or indeed any
group of fewer than ¢ participants) ever learns the secret key s, the generation of s and
distribution of shares s, ..., s, often require generating shares using a less-trusted
method than relying on a central dealer. Instead, these schemes (including FROST)
make use of a Distributed Key Generation (DKG) protocol, which we describe next.

2.3 Distributed Key Generation

While some threshold schemes such as Shamir secret sharing rely on a trusted dealer
to generate and distribute secret shares to all participants, not all threat models can



allow for such a high degree of trust in a single individual. Distributed Key Gener-
ation (DKG) supports such threat models by enabling every participant to contribute
equally to the generation of the shared secret. At the end of running the protocol, all
participants share a joint public key Y, but each participant holds only a share s; of the
corresponding secret s such that no set of participants smaller than the threshold knows
5.

Pedersen [15] presents a two-round DKG where each participant acts as the central
dealer of Feldman’s VSS [6] protocol, resulting in n parallel executions of the protocol.
Consequently, this protocol requires two rounds of communication between all partic-
ipants; after each participant selects a secret x;, they first broadcast a commitment to
x; to all other participants, and then send all other participants a secret share of ;.

Gennaro et al. [9] demonstrate a weakness of Pedersen’s DKG [15] such that a mis-
behaving participant can bias the distribution of the resulting shared secret by issuing
complaints against a participant after seeing the shares issued to them by this partici-
pant, thereby disqualifying them from contributing to the key generation. To address
this issue, the authors define a modification to Pedersen’s DKG to utilize both Feld-
man’s VSS as well as a verifiable secret sharing scheme by Pedersen [16] resulting in a
three-round protocol. To prevent adversaries from adaptively disqualifying participants
based on their input, the authors add an additional “commitment round”, such that the
value of the resulting secret is determined after participants perform this commitment
round (before having revealed their inputs).

In a later work, Gennaro et al. [8] prove that Pedersen’s DKG as originally de-
scribed [15] is secure enough in certain contexts, as the resulting secret is sufficiently
random despite the chance for bias from a misbehaving participant adaptively select-
ing their input after seeing inputs from other participants. However, Pedersen’s DKG
requires larger security parameters to achieve the same level of security as the mod-
ified variant by Gennaro et al. [9] that requires the additional commitment round. In
short, the two-round Pedersen’s DKG [15] requires a larger group to be as secure as
the three-round DKG presented by Gennaro et al. [9].

2.4 Schnorr Signatures

Often, it is desirable for signatures produced by threshold signing operations to be
indistinguishable from signatures produced by a single participant, consequently re-
maining backwards compatible with existing systems, and also preventing a privacy
leak of the identities of the individual signers. For our work, we require signatures pro-
duced by FROST signing operations to be indistinguishable from Schnorr signatures,
and thus verifiable using the standard Schnorr verification operations. To this end, we
now describe Schnorr signing and verification operations [17] in a single-signer setting.

Let G be a group with prime order ¢ and generator g, and let H be a cryptographic
hash function mapping to Z;. A Schnorr signature is generated over a message m by
the following steps:

1. Sample a random nonce k €g Z,; compute the commitment R + g* € G
2. Compute the challenge ¢ = H(m, R)
3. Using the secret key s, compute the response z = k + 5 - ¢ € Z,



4. Define the signature over m to be o = (z, ¢)

Validating the integrity of m using the public key Y = ¢° and the signature o is
performed as follows:

1. Parse o as (z, ¢).

2. Compute R’ = g¢*-Y ¢

3. Compute 2/ = H(m, R')

4. Output 1 if z = 2’ to indicate success; otherwise, output 0.

Schnorr signatures are simply the standard X-protocol proof of knowledge of the
discrete logarithm of Y, made non-interactive (and bound to the message m) with the
Fiat-Shamir transform.

2.5 Additive Secret Sharing

Similarly to the single-party setting described above, FROST requires generating a ran-
dom nonce k for each signing operation. However, in the threshold setting, k£ should be
generated in such a way that each participant contributes to but does not know the re-
sulting k (properties that performing a DKG as described in Section 2.3 also achieve).
Key to our design of FROST is the observation that while an arbitrary ¢ out of n enti-
ties are required to participate in a signing operation, a simpler ¢-out-of-¢ scheme will
suffice to generate the random nonce k.

While Shamir secret sharing and derived constructions require shares to be points
on a secret polynomial f where f(0) = s, an additive secret sharing scheme allows
t participants to jointly compute a shared secret s by each participant P; contributing
a value s; such that the resulting shared secret is s = Z§=1 S, the summation of
each participant’s share. Consequently, this ¢-out-of-¢ secret sharing can be performed
non-interactively; each participant directly chooses their own s;.

Benaloh and Leichter [1] generalize this scheme to arbitrary access structures; the
threshold t-out-of-n case (the “CNF” scheme) corresponds to, for each subset A C
{1,...,n} of size n — (t — 1), selecting a random s 4, a copy of which is given to every
participant P; for ¢ € A. The secret is the sum of all the s4, as before. Note that for
general n and ¢, this scheme is inefficient because each participant holds (’;:11) shares.
However, in the case n = t, this scheme reduces to exactly the simpler ¢-out-of-¢
additive scheme above.

Share Conversion. Cramer, Damgard, and Ishai [4] present a non-interactive
mechanism for participants to locally convert additive shares generated via the above
generalized additive secret sharing scheme to polynomial (Shamir) form. To perform
share conversion using this technique, a secret polynomial f is constructed such that
each participant P; can evaluate f only at point 4.

We start with the same setup as above: we consider subsets of {1,...,n} of size
n — (t —1). Let U be the universe of all (,",) such subsets. For each A € U (so that
A is a particular subset of size n — (¢ — 1)), there is a secret share s4. Then for each
i € A, participant P; holds a copy of s4. The secret s is finally the sum > , ;; 54.

Cramer et al. [4] demonstrate how to non-interactively convert these t-out-of-n
additive secret shares of s to t-out-of-n Shamir shares of the same s. For each A € U,



define the polynomial ga(2) = [L;c 1 npa =2 (this polynomial can be constructed
from information that is entirely public to each participant). Note that for each A of
sizen — (t—1), ga(x) is of degree t — 1, satisfies g(i) = 0 foreach i € {1,...,n}\A4,
and g(0) = 1. Now define f(z) = >, oy 54ga(z), which similarly is a degree
t — 1 polynomial. Each participant P; can compute f(¢) using their knowledge of
sa for each A that contains ¢, but no other evaluation of f. Therefore, as f(0) =
Yoacy 5494(0) = > 4c 84 = s, each f(i) is indeed a t-out-of-n Shamir secret
share of s.

In our work, we use the special case of this technique when n = ¢. In this case, each
set A is of size 1; consequently, each participant P; can simply choose their own s,

non-interactively. The resulting g¢;) () is a degree ¢ — 1 polynomial with g;;3(0) = 1,

9y (7) = 0forj € {1,... . t\{i},and giy (1) = [Ljc 1,y 55 = x;» Where g

is the i Langrange coefficient for interpolating on the set {1, ..., t}. Therefore, f(i)

is simply Sf\—l} The key observation is that if ¢ participants each select s; at random,
then /S\T is a t-out-of-t Shamir secret share of s = ). s;. Importantly, participants
are not required to communicate at all when creating this Shamir secret sharing of a
random value.?

In FROST, participants use this technique during signing operations to non-interactively

generate a one-time secret nonce (as is required by Schnorr signatures, described in
Section 2.4) that is Shamir secret shared among all ¢ signing participants.

3 Motivation

Prior threshold signature constructions [20, 8] provide the property of robustness; if
one participant misbehaves and provides malformed shares, the remaining honest par-
ticipants can detect the misbehaviour, exclude the misbehaving participant, and com-
plete the protocol, so long as the number of remaining honest participants is at least the
threshold ¢. This kind of robust construction is appropriate in settings where signing
participants might be arbitrary entities from the Internet, for example.

However, in settings where one can expect misbehaving participants to be rare, one
can use a protocol that is more efficient in the “optimistic” case that all participants
honestly follow the protocol, even if it means aborting and restarting the protocol (hav-
ing kicked out the misbehaving participant) otherwise.

We now present two use cases of threshold signatures demonstrating when robust-
ness as a security property for threshold signatures is not strictly required in real-world
settings, so long as misbehaviour can be detected when it occurs and the misbehaving
participant identified and excluded in the future.

2 An interesting property of the Cramer et al. share conversion scheme that is tangential to our work but
worth noting is how s can be updated in a distributed but non-interactive manner in the general ¢t-out-of-n
case. Once the copies of each s 4 share have been distributed across the participants P;¢ 4, the Shamir-shared
secret s = 4y 5 can be updated in a forward-secret manner by having all participants modify their
local copies of each s 4 in a deterministic but one-way manner; for example, by hashing. The polynomial
evaluations f (%) are then recomputed (again, locally to each participant) with the new s4 values. In this
way, a t-out-of-n Shamir shared secret s can be non-interactively updated in a forward-secret manner to a
new random ¢-out-of-n Shamir shared secret.



Use Case One: Single Owner, Partitioned Secret. In a setting when a secret sign-
ing key s is partitioned among a set of devices owned by the same entity, robustness is
not a strict requirement for signing operations. In this setting, s is partitioned to ensure
redundancy in the case of device failure, while limiting the exposure of s to any single
device. Notably, a device that issues malformed signatures during signing operations
can be simply removed from the set of trusted devices, as the misbehaving device could
either be broken or compromised. Because the set of devices is owned entirely by a
single entity, simply aborting the protocol and replacing the malfunctioning device is
sufficient for this setting.

Use Case Two: Required Abort on Misbehaviour. When s is divided among a set
of n mutually untrusted participants, misbehaviour by one of the participants warrants
immediate investigation in some settings. In other words, the misbehaviour by one
participant requires immediate investigation and consequently aborting the protocol.
One appropriate response after detecting misbehaviour in this setting can be to remove
the participant from the set of trusted signers. In sum, while the act of misbehaving and
the identity of the misbehaving participant should be identifiable, the protocol does not
require robustness.

Observations. Importantly, both use cases underscore the practicality of favouring
improved efficiency over robustness in the optimistic case that no participant misbe-
haves. However, if one participant does misbehave and contributes malformed shares,
honest participants can identify the misbehaving participant and abort the protocol. The
honest participants can then simply re-run the protocol amongst themselves, excluding
the misbehaving participant. Consequently, we can leverage this insight to improve
upon prior threshold signature constructions, trading off robustness in the protocol for
improved efficiency.

4 Related Work

Stinson and Strobl [20] present a threshold signature scheme producing Schnorr sig-
natures, using the modification of Pedersen’s DKG presented by Gennaro et al. [9] to
generate both the secret key s during key generation as well as the random nonce k&
during each signing operations as required by Schnorr signatures. In total, this con-
struction requires at minimum four rounds for each signing operation (assuming no
participant misbehaves): three rounds to perform the DKG to obtain %, and one round
to distribute signature shares and compute the resulting group signature. Each round
requires participants to send values to every other participant.

Gennaro et al. [8] present a threshold Schnorr signature protocol that uses Peder-
sen’s DKG as presented originally [15] to generate both s during key generation and
the random nonce k during signing operations. Recall from Section 2.3 that Pedersen’s
DKG requires two rounds to obtain the k value. In the setting that all participants main-
tain equal levels of trust, signing operations in this construction require three rounds
of communication in total, where all participants send values to all other participants
in each round. The authors also discuss an optimization that leverages a signature
aggregator role, an entity trusted to gather signatures from each participant, perform
validation, and publish the resulting signature, a role we also adopt in our work. In



their optimized variant, participants can perform Pedersen’s DKG to generate multiple
k values in a pre-processing stage independently of performing signing operations. In
this variant, to compute ¢ number of signatures, signers first perform two rounds of
{ parallel executions of Pedersen’s DKG, thereby generating ¢ random nonces. The
signers can then store these pre-processed values to later perform ¢ single-round sign-
ing operations.

Along with standard security notions of correctness and protection against adap-
tive chosen-message attacks, the schemes presented by Stinson and Strobl [20] and
Gennaro et al. [8] are both robust; participants that contribute malformed values can
be discarded and the protocol can complete, so long as at least ¢ valid participants
correctly follow the protocol.

Our work builds upon both of the above schemes; we adapt the proof of security
presented by Stinson and Strobl [20] to prove the security of our scheme, and we use
Pedersen’s DKG for key generation with a requirement that in the case of misbehaviour,
the protocol aborts and the cause investigated out of band. However, our work has one
key difference. Notably, we do not perform a DKG during signing operations as is
done in both of the above schemes, but instead make use of additive secret sharing and
share conversion. Consequently, our scheme trades off robustness for more efficient
signing operations, such that a misbehaving participant can cause the signing operation
to abort. However, as described in Section 3, this tradeoff is practical to many real-
world settings. Further, because FROST does not provide robustness, FROST is secure
so long as the adversary controls fewer than the threshold ¢ participants for any ¢ < n;
protocols that provide both secrecy and robustness can at best provide security for
t <mn/2[9].

While FROST exchanges robustness for improved network round efficiency, other
threshold scheme constructions have followed a similar trend. Gennaro and Goldfeder [7]
present a threshold ECDSA scheme that similarly requires aborting the protocol in
the case of participant misbehaviour. Their signing construction uses a two-round
DKG to generate the nonce required for the ECDSA signature, leveraging additive-
to-multiplicative share conversion, which has since been independently leveraged in
a Schnorr threshold scheme context to generate the random nonce for signing opera-
tions [14].

4.1 Attack on Parallelized Schnorr Multisignatures

We next describe an attack recently introduced by Drijvers et al. [5] against some two-
round Schnorr multisignature schemes and describe how this attack applies to a thresh-
old setting. This attack can be performed when an adversary can open many (say 1
number of) parallel simultaneous signing operations such that the adversary can see the
victim’s commitment to their share of the signing nonce in each of the v parallel exe-
cutions, before the adversary must choose their own shares for any of the executions.
Successfully performing this attack requires finding a hash output ¢* = H(m*, R*)
that is the sum of v other hash outputs c¢* = Zj’zl H(m, R;) (where c is the chal-
lenge, m the message, and R the commitment corresponding to a standard Schnorr
signature as described in Section 2.4). However, Drijvers et al. use the k-tree algorithm



of Wagner [21] to find such hashes and perform the attack in time O(r - b - 20/ (1+18 %)),
where k = 1 + 1, and b is the bitlength of the order of the group.

Although this attack was proposed in a multisignature n-out-of-n setting, this at-
tack applies similarly in a threshold ¢-out-of-n setting with the same parameters for
an adversary that controls up to ¢t — 1 participants. We note that the threshold scheme
instantiated using Pedersen’s DKG by Gennaro et al. [8] is likewise affected by this
technique and so similarly has an upper bound to the amount of parallelism that can be
safely allowed.

In Section 6.2 we analyze the effect of this attack on safe choices of the level of
parallelism ¢ that our first two variants of FROST can support. We also propose a
third variant that avoids the attack at some extra computational cost by requiring each
participant to select their shares of the signing nonces before seeing other participants’
commitments (a similar technique to the secure two-round multisignature scheme pre-
sented also by Drijvers et al. in the same work [5]).

The authors also present a metareduction for the proofs of several Schnorr mul-
tisignature schemes in the literature that use a generalization of the forking lemma
with rewinding, proving that the security demonstrated in a single-party setting does
not extend when applying this proof technique to a multi-party setting; we show in
Section 7 why this metareduction does not apply to our proof of security.

5 Preliminaries

Let G be a group of prime order ¢ in which the Decisional Diffie-Hellman problem is
hard, and let g be a generator of G. Let H be a cryptographic hash function mapping
to Z.

Let n be the number of participants in the signature scheme, and ¢ denote the thresh-
old of the secret-sharing scheme. Let ¢ denote the participant identifier for participant
P; where 1 < i < n. Let s; be the long-lived secret share for participant P;. Let Y
denote the long-lived public key shared by all participants in the threshold signature
scheme, and let Y; = ¢° be the public key share for the participant P;. Finally, let m
be the message to be signed.

For a fixed set S = {p1, ..., p:} of t participant identifiers in the signing operation,
let \; = H§:1, it ﬁ denote the i Lagrange coefficient for interpolating over
S. Note that the information to derive these values depends on which ¢ (out of n)
participants are selected, and uses only the participant identifiers, and not their shares.?

Security Assumptions. We maintain the following assumptions, which implemen-
tations need to account for in practice.

- Message Validation. We assume every participant checks the validity of the message
m to be signed before issuing its signature share. If the message is invalid, the
participant should take actions to discard the message and report the misbehaviour
to other participants.

3Note that if 7 is small, the \; for every possible S can be precomputed by each participant during the
key generation phase of the protocol as a performance optimization to avoid re-computing these values for
each signing operation.

10



- Reliable Message Delivery. We assume messages are sent between participants using
a reliable network channel.

- Participant Identification. In order to report misbehaving participants, we require
that values submitted by participants to be identifiable within the signing group.
Our protocols assume participants are not forging messages by other participants,
but implementations can enforce this using a method of participant authentication
within the signing group.*

6 FROST: Flexible Round-Optimized Schnorr Thresh-
old signatures

We now present FROST, a Schnorr-based threshold signature scheme that addresses the
network performance requirements of threshold signatures used in practice, including
the use cases presented in Section 3. While prior constructions described in Section 2.3
use a multi-round DKG to generate shared random values during both key genera-
tion and signing operations, FROST leverages additive secret sharing (as described in
Section 2.5) to non-interactively generate random values for signing operations. We
present three variants of signing operations in FROST to demonstrate its flexibility in
different settings. The first two variants require limiting the number of signing opera-
tions that any participant can perform in parallel, while the final variant does not restrict
the amount of parallelism.
All three variants use the same key generation phase, which we now describe.

6.1 Key Generation

To generate long-lived key shares in our scheme’s key generation protocol, FROST
uses Pedersen’s DKG for key generation. Similarly to Gennaro et al. [8], we refer
to Pedersen’s DKG as Ped-DKG for the remainder of this work, and present detailed
protocol steps in Figure 1.

To begin the key generation protocol, a set of participants must be formed using
some out-of-band mechanism decided upon by the implementation. After participating
in the Ped-DKG protocol, each participant P; holds a value (i, s;) that is their long-
lived secret signing share. Participant P;’s public key share Y; = g% is used by other
participants to verify the correctness of P;’s signature shares in the following signing
phase, while the group public key Y can be used by parties external to the group to
verify signatures issued by the group in the future.

View of Commitment Values. As required for any multi-party protocol using
Feldman’s VSS, the key generation stage in FROST similarly requires participants to
maintain a consistent view of commitments issued during the execution of Ped-DKG.
In this work, we assume participants broadcast the commitment values honestly (e.g.,
participants do not provide different commitment values to a subset of participants);
recall Section 2.1 where we described techniques to achieve this guarantee in practice.

4For example, authentication tokens or TLS certificates could serve to authenticate participants to one
another.

11



Distributed Key Generation (DKG) Protocol: Ped-DKG [15]

Round One

1. Every participant P; samples ¢ random values (a;o, . . . ,ai(t_l))) €R Zg, and
uses these values as coefficients to define a polynomial
filz) = Z;;é a;;x7 of degree t — 1 over Z,.

2. Every participant P; computes a public commitment and broadcasts this
commitment to all other participants.

Ci = (¢i0, - -5 i(t—1))> Where ¢; = g%, 0 < j <t -1

Round Two

1. Each participant P; securely sends to each other participant P; a secret share
(4, fi(4)), and keeps (i, f;(i)) for themselves.

2. Every participant P; verifies the share they received from each other
participant P;, where i # j, by verifying:

(i) ? t—1 ,4i* mod
gfg(i) :Hk:O (b;k odq

If the check fails, abort the protocol and investigate the participant that
resulted in the failed check. Otherwise, continue to the next step.

3. Each participant P; calculates their long-lived private signing share by
computing the sum of their own and all their received shares
S; = 2?21 f; (%), and stores s; securely.

4. Each participant then calculates their own public verification share Y; = g%,
and the group’s public key Y = H;;l ¢;o. Note that any participant can
compute the public verification share of any other participant as

_ n t—1 ,i® mod ¢
Y = Hj:l [Ti=o Dik :

Figure 1: Ped-DKG. A distributed key generation protocol introduced by Peder-
sen [15] where each of n participants executes Feldman’s VSS as the dealer in parallel,
and derives their secret share as the sum of the shares received from each of the n VSS
executions. This variant requires aborting the protocol on misbehaviour.
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Security tradeoffs. While Gennaro et al. [9] describe the “Stop, Kill, and Rewind”
variant of Ped-DKG (where the protocol terminates and is re-run if misbehaviour is de-
tected) as vulnerable to influence by the adversary, we note that in a real-world setting,
good security practices typically require that the cause of misbehaviour is investigated
once it has been detected; the protocol is not allowed to terminate and re-run continu-
ously until the adversary finds a desirable output. However, implementations wishing
for a robust DKG can use the construction presented by Gennaro et al. [9]. Note that
the efficiency of the DKG for the key generation phase is not extremely critical, be-
cause this operation must be done only once per key generation for long-lived keys.
For the per-signature operations, FROST optimizes the generation of random values
without utilizing a DKG, as discussed next.

6.2 Signing

We now present three variants of the signing protocol for FROST. Note all variants
leverage the use of a signature aggregator, which we now describe. FROST proto-
cols can also be instantiated without a signature aggregator; we present this option in
Appendix A.

Signature Aggregator Role. FROST assumes a semi-trusted role, which we call
the signature aggregator A. This role can be performed by any participant in the proto-
col, or even an external party, provided they know the participants’ public-key shares
Y;. A is trusted to report misbehaving participants (we assume values submitted by
participants can be authenticated, as discussed in Section 5) and to publish the group’s
signature at the end of the protocol. As we further describe in Section 7, if .4 devi-
ates from the protocol, the protocol remains secure against adaptive chosen message
attacks. A malicious A has the power to perform denial of service attacks and to falsely
report misbehaviour by participants, but cannot learn the private key or cause improper
messages to be signed. Note this signature aggregator role is also used by Gennaro et
al. [8] to enable the optimized variant of their construction.

Limits on parallelism of two FROST variants. As noted in Section 4.1, the attack
of Drijvers et al. [5] limits the number of concurrent signing operations a signing party
may safely perform for some multi-party Schnorr signature schemes. Our first two
variants of FROST are of the kind affected by the attack if the level of concurrency v
is not limited (the third variant is not); we now concretely analyze the implications of
their attack and give safe parameters for implementations.

As above, suppose an adversary in a t-out-of-n threshold signing scheme controls
t — 1 of the ¢ participants in the signing phase of the protocol. Further suppose the
remaining (victim) participant can be invoked in such a way that they begin ¢ parallel
invocations of the signing protocol with the attacker. The victim will generate one
nonce value d;; and distribute one commitment D;; for each of the 1) open signing
invocations; importantly, they will do so before the adversary selects their own nonce
values and reveals their commitments. Consequently, the adversary can create a forged
signature from the group in time O(x - b - 2%/(1+18%)) ‘where x = 1) + 1, and b is the
bitlength of the order of the group.

In Table 1 we give the effective security level for protocols where this attack is
possible (such as the first two variants of FROST) for two common group sizes and
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Table 1: Effective security levels (in bits) for our first two variants of FROST at differ-
ent numbers 1) of allowed concurrent signing operations.
Bitlength of Effective security for ¢ =

group order 1 3 7 15
256 128 95 75 63
448 224 160 124 102

levels of parallelism, from ¢ = 1 (no parallelism) to ¢» = 15. We examine group
orders of size approximately 256 bits, such as Curve25519, and of size approximately
448 bits, such as Ed448. We cap the security at b/2 bits as this is the cost of simply
extracting the private key from the public key in a b-bit group.

As we can see, allowing up to ¢ = 3 parallel signature invocations using a 256-
bit elliptic curve group still allows for a quite reasonable 95 bits of security, while
allowing up to ¢y = 7 parallel signature invocations using a 448-bit elliptic curve group
still allows for nearly 128-bit security.

Overview of FROST Signing Variants. We next describe our three variants of
FROST. Our first is a basic two-round variant that requires each participant to send and
receive only two messages in total. Our second variant reduces the online signing cost
to a single round, but utilizes a non-interactive batch preprocessing phase. Both vari-
ants require imposing limitations on 1), the number of concurrent signing operations,
with security levels described on Table 1. The third variant does not restrict parallelism
of signing operations, but instead requires participants to select their nonces before see-
ing the commitments to the nonces of other participants, but in turn requires either an
additional round in the preprocessing phase or additional computation in the online
signing phase.

6.3 Two-Round Interactive Signing Protocol

We present a two-round protocol in Figure 2; notably, this design requires participants
to send and receive only two messages in total (one message in each round). The signa-
ture aggregator A performs coordination among all the participants and consequently
sends and receives ¢ messages in each round (or ¢ — 1 messages if A is also a partici-
pant).

At the beginning of the signing protocol, A selects ¢ participants (possibly includ-
ing itself) to participate in the signing. Let S be the set of those ¢ participants. In
the first round, A4 asks each participant in S for a commitment share, which serves as
a secret share to a random commitment for the group (corresponding to the commit-
ment g* to the nonce value k in step 1 of the single-party Schnorr signature scheme in
Section 2.4). This technique is a t-out-of-¢ additive secret sharing; the resulting secret
nonce is k = ), g d;, with each d; selected by participant P;, i € S. Recall from
Section 2.5, however, that if the d; values are additive shares of k, then % are t-out-of-t
Shamir shares of k. After generating their nonce value d; locally and non-interactively,
each participant sends a commitment share D; = g% to A.

In the second round, each participant in S receives from .4 the message m to be
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Sign(m) — (m, o)

Let A denote the signature aggregator. Let .S form the set of identifiers
corresponding to the participants selected for the signing operation, where
|S| = ¢. Note that .A can themselves be one of the ¢ participants.

Round 1

1. The signature aggregator A initializes a signing operation by sending a
request for a commitment share to each participant P; : ¢ € S.

2. Each P; samples a fresh nonce d; €g Z,.

3. Each P; derives a corresponding single-use public commitment share
Di = gdi.

4. Each P; returns D; to A, and stores (d;, D;) locally.

Round 2

1. The signature aggregator .A computes the public commitment R = [[,. g D;
for the set of selected participants.

2. Fori € S, Asends P, the tuple (m, R, S).

3. After receiving (m, R, .S), each participant P; for i € S first validates the
message m, aborting if the check fails.

4. Each P; computes the challenge ¢ = H(m, R).

5. Each P; computes their response using their long-lived secret share s; by
computing z; = d; + A; - 8; - ¢, using S to determine ;.

6. Each P; securely deletes (d;, D;), and then returns z; to A.

7. The signature aggregator A performs the following steps:

7.a Verifies the validity of each response by checking g* £ D, - Y;¢™ for
each signing share z1, . .., z;. If the equality does not hold, first
identify and report the misbehaving participant, and then abort.
Otherwise, continue.

7.b Compute the group’s response z = > z;

7.c Publish the signature o = (z, ¢) along with the message m.

Figure 2: FROST Two-Round Signing Protocol
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signed and the group’s public commitment R to k. Each participant checks that m
is a message they are willing to sign. Then, as in single-party Schnorr signatures,
each participant computes the challenge ¢ = H(m, R). The response to the challenge
(z = k + s - c in the single-party case) can be computed using the long-term secret
shares s;, which are t-out-of-n (degree ¢ — 1) Shamir secret shares of the group’s long-
lived secret key s. Recalling that f— are degree t — 1 Shamir secret shares of k, we see

that % +s; - c are degree t — 1 Shamir secret shares of z. Using share conversion again,
we get that z; = d; + \; - s; - ¢ are t-out-of-¢ additive shares of z.

A finally checks the consistency of each participant’s reported z; with their com-
mitment share D; and their public key share Y; and if every participant issued a correct
zi, then the sum of the z; values, along with ¢, forms the Schnorr signature on m.

Implementing Concurrency. As written, the protocol only allows for a single
(d;, D;) pair to be “outstanding”; that is, created in round 1 but not yet used in round
2. Implementers that wish to support parallel signature operations (multiple round 1
invocations can begin before the round 2 invocations are completed) will need A to
also pass D; in step 2 of round 2 to indicate to the signer which d; to use in step 5.
As described in Section 6.2, implementers should also take care to bound the levels of
parallelism for this signing variant.

6.4 Single-Round Signing Protocol with Preprocessing

We now describe an optimization to the signing protocol presented in Figure 2. Instead
of each participant generating one random nonce and commitment share at the time of
each signing operation, participants instead generate a set of v of these values during an
asynchronous and non-interactive batched pre-processing stage. This variant assumes
the availability of a centralized location to store commitment shares which we term
a commitment server, further described below. After performing this pre-processing
step, this variant of FROST can support signing operations in a single (non-broadcast)
round. We present the full protocol details of this variant in Figure 3.

One feature of the single-round variant that we wish to highlight is the ability to
perform asynchronous signing operations. Specifically, signers only need to receive
one message and reply eventually. Because the protocol occurs in one round, signers
are not required to be online simultaneously and instead can process requests and re-
spond with signature shares asynchronously; the final signature can be computed after
the " signer provides their signature share. This computation can be done by A, or
even publicly (for example, on a blockchain), if the set of which particular ¢ participants
contributed to a given signature is not required to be secret.

Commitment Server Role. The commitment server role performs storage and
management of participants’ commitment shares, and consequently must be accessible
to all participants. While the commitment server may be a separate entity, we note that
the signature aggregator A can also provide this service in addition to its other duties.
In this setting, the commitment server is trusted to provide the correct commitment
shares upon request. If the commitment server chose to act maliciously, it could either
prevent participants from performing the protocol by denial of service, or it could pro-
vide stale or malformed commitment values on behalf of honest participants, causing
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Preprocess(y)) — (i,{D;; : j € {1,...,9¥}})
Each participant P; performs this stage independently as a prerequisite to
participate in future signing operations. Let j be a counter denoting a specific
nonce/commitment share pair, and let 1) be a constant indicating the number of
such pairs generated in a single batch.

1. Create an empty list L;.
2. Forj: (1,...,%), perform the following steps:

2.a Sample d;; < 7Z, as a single-use private nonce.

2.b Derive a corresponding single-use public commitment share
Dyj = g%,
2.c Append D;; to the list L;, and store (d;;, D;;) locally.

3. Publish (¢, L;) to the commitment server, where 1 is the identifier for
participant P;.

Sign(m) — (m, o)

Let A denote the signature aggregator. Let .S be the set of identifiers
corresponding to the participants selected for the signing operation, where
|S| = t.

1. The signature aggregator A fetches the next unused commitment share for
each participant (¢, D;;) : ¢ € S from the commitment server. The
commitment server returns these values, and deletes them to prevent their
use in future signing operations.

2. A computes the signing group’s public commitment R = [],. ¢ Di;.
3. The signature aggregator A sends each selected participant the tuple
(m, R, S, Dj;), including D;; to indicate which nonce/commitment share

the participant should use to perform signing.

4. After receiving (m, R, S, D;;), each participant P; checks to make sure that
D;; corresponds to a valid unused nonce d;;. If not, the participant
responds to A to indicate that the signing protocol must be re-run, and
aborts.

5. Each participant validates the message m, aborting if m is invalid.

6. The signature aggregator and participants follow the remaining steps 4—7 in
Round 2 of Figure 2.

Figure 3: FROST Single-Round Signing Protocol with a Non-Interactive and Batched
Pre-Processing Stage 17



uncertainty as to whether the commitment server or the participant was the misbehav-
ing entity. We note that if A assumes the commitment server role itself, this uncertainty
is avoided; in addition, by performing the role of commitment server, .A has a complete
view of what participants have published and consequently can carry out their role to
report misbehaviour when it occurs.

Preprocessing Stage. In the preprocessing stage, each participant begins by gen-
erating a set of single-use private nonces and corresponding public commitment shares
(dij, Dij) : j € {1,...,%¢}, where v, the batch size, reflects the number of commit-
ments to nonces that are generated and published before any are used; it is effectively
the same notion as the amount of parallelism for the first protocol variant above, and
must be restricted to a small value in the same way. In this setting, 5 is a counter main-
tained by each participant locally to identify the next nonce/commitment share pair
available to use for signing.

Each participant P; then publishes this set of commitment shares and their own
participant identifier (¢, {D;; : j € {1,...,%}}) to the commitment server. The com-
mitment server stores this information for use in subsequent signing operations.

We present the complete set of steps for this preprocessing stage in Figure 3. Each
participant must separately perform this operation at least once per each v signing
operations.

Signing Protocol. The signing protocol in this variant remains largely the same
as in Section 6.3, as demonstrated in Figure 3. However, instead of the signature ag-
gregator A requesting D;; from each participant, A instead fetches these values from
the commitment server, which deletes each one (or marks it as used) after serving it
to A. Upon receiving the request from .4 to begin the signing protocol that includes
the commitment share D;; indicating which nonce to use in the signing operation,
each participant first checks to ensure that D;; corresponds to a valid nonce and com-
mitment share (e.g., the participant has not yet deleted d;; after using it in an earlier
signing round).

Because each nonce and commitment share generated during the preprocessing
stage described in Figure 3 must be used at most once, participants delete these val-
ues after using them in a signing operation, as indicated in Step 5 in Figure 2. An
accidentally reused d;; can lead to exposure of the participant’s long-term secret s;, SO
participants must securely delete them, and defend against snapshot rollback attacks as
in any implementation of Schnorr signatures.

On the other hand, if the commitment server serves an already-used commitment
share D;; to A during the signing protocol (e.g, the commitment server fails to delete
or mark as used D;; after its use in a previous signing operation), the commitment
server will cause a denial of service on the signing protocol. Further, as above, settings
where the commitment server is not run by A itself, the commitment server may cause
ambiguity as to whether it was the commitment server (serving a stale D;;) or the par-
ticipant (refusing to respond to a valid D;;) that is misbehaving. However, private keys
of participants will never be revealed as a result of misbehaviour by the commitment
server, and the security of the scheme remains the same as single-party Schnorr, as
described in Section 7.
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6.5 Signing with Unrestricted Concurrency

Some deployments of FROST may find the restriction of 1, the number of allowable
parallel invocations of the protocol of Figure 2, or the batch size of the protocol of
Figure 3, to be undesirable. To that end, we propose alterations to our single-round
signing protocol to safely allow an unrestricted number of parallel signing operations.

As a reminder, the limitation on concurrent signing operations in the first two vari-
ants of FROST is a safeguard against the attack of Drijvers et al., which requires the ad-
versary to see the victim’s 1 values of D;; before selecting their own commitment. To
prevent this attack without limiting concurrency, our third variant requires participants
to select their d;; nonces (and so their commitment shares D;; = g%3) in advance of
seeing other participants’ commitment shares. We now describe possible instantiations
of such a technique.

Commitment via Additional Round. A simple solution to bind participants to
their commitment values is to require an additional round in the preprocessing phase of
the protocol in Figure 3. In step 2 of the preprocessing phase, in addition to computing
D;; = g%, participant P; also computes 7; j» anoninteractive zero-knowledge proof of
knowledge of d;;. (Note that this is just a regular single-party Schnorr signature, using
d;; as the private key, over the message (i, j).) The pair (D;;, 7;;) is appended to the
list L; instead of just D;;. Then between steps 2 and 3 of the preprocessing phase,
each participant P; computes a Merkle tree whose leaves are the (D,;, m;;) pairs. Let
pi be the root of the Merkle tree. P; publishes (i, p;) to the commitment server. Each
participant then reads and stores each other participant’s p; value before proceeding to
the existing step 3, to publish its list of ) number of (D;;, m;;) pairs to the commitment
server.

When performing signing operations, in step 3 of the signing phase, instead of
sending (m, R, S, D;;) to each of the ¢ participants P; in the signing protocol, A in-
stead sends (m, (¢, Dij, Tij, f4i5))ics) to all ¢ participants, where f1;; is the Merkle
proof that (Dij, m;;) was in the Merkle tree rooted at p;. Each signer can then check
the signatures 7;;, the Merkle proofs u;;, compute R to be the product of the D;;
values, and proceed with step 4 as before.

Note that we use a Merkle root so that each participant is required to locally store
only a constant amount of data about each other participant, independent of ).

Commitment without Additional Round. For implementations that do not wish
to add an extra network round even during the preprocessing phase, we now describe
an alternative approach that has higher computational cost per signer but no additional
rounds. In this approach, we use two additional one-way functions h; and ho, each
mapping Zg to Zg.

In the key-generation phase of the protocol, each participant P; selects a random
750 €R Zg, and publishes D;y = gh1 (rio) 'in parallel with the rest of the key generation
protocol. Then during the preprocessing phase of Figure 3, instead of participant P;
choosing their d;; values at random, they are computed from 7 by ratcheting:

rij = ha(rii—1))s dij = ha(rij), Dij = g%,

For forward secrecy, the r;; values must be discarded as soon as d;; and 7;(;41)
have been computed. Then the list L; will contain (D;;, ;;) pairs, where m;; here
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is a non-interactive zero-knowledge proof of knowledge of r = r;;_1) such that
D;(j—1) = g™ and D;; = g™ ("2(") A will then provide (m, ((i, D;j, 7i;))ics) to
all ¢ participants in the signing protocol, as above. (A will also need to provide the D;;
and 7;; values that were “skipped” to any of the ¢ participants that did not participate
in a previous signing round. Each participant just keeps track of the last (j, D;;) value
they saw for each other participant P;.)
As a proof of concept, we implemented this zero-knowledge proof using libsnark [18].

As our one-way functions we defined /4 (r) as the x-coordinate of the point H; on a
256-bit elliptic curve, and similarly for ho, where H; and H, are constant points with
unknown discrete logarithm. We computed the commitments D;; = g% also on that
256-bit elliptic curve.> The complete zZkSNARK required 3840 R1CS constraints. In
100 runs of this implementation, zero-knowledge proof generation took an average of
240 4+ 2ms, and proof verification took an average of 1.2 4+ 0.1 ms. The proofs are
a constant 137 bytes in size. Other zero-knowledge proof systems could of course be
used instead of zZkSNARKSs.

7 Security

We now present proofs of correctness and security of FROST by employing proof
techniques first presented by Stinson and Strobl [20] but adapted for our work.

7.1 Correctness

As in the proof of correctness by Stinson and Strobl, signatures in FROST are also
constructed from two degree ¢ — 1 polynomials; the first polynomial F (x) defining the
secret sharing of the private signing key s and the second polynomial F»(x) defining the
secret sharing of the nonce k. During the key generation phase described in Figure 1,
the first polynomial Fy (z) = 3°7_, f;(x) is generated such that the secret key shares
are s; = F (i) and the secret key is s = F(0). During the signature phase (Figure 2),
each of the ¢ participants whose identifiers are in the set S select a d;, and using share
conversion, define a degree ¢ — 1 polynomial F»(x) interpolating the values (4, %)
such that F5(0) = . ¢ d;.

Then let F3(x) = Fo(x) + ¢ - Fi(z), where ¢ = H(m, R). Now z; in Figure 2 is
di+Ni-si-c = N(Fa(i) +cFi(i)) = N\iF3(i), 80 2 = ), g 2 is simply the Lagrange
interpolation of F3(0) = (3 _,.gd;) +c- 5. Because R = g>ies % and ¢ = H(m, R),
(z, ¢) is a correct Schnorr signature on m.

7.2 Security Against Chosen Message Attacks

To demonstrate that signatures in FROST are unforgeable under adaptively chosen
message attack in the random oracle model so long as the adversary controls fewer
than the threshold ¢ participants for ¢ < n, we demonstrate that an adversary Az

SThis curve is specifically chosen to be efficient for the zkSNARK computation; using a “standard”
curve for the final commitment computation would be more expensive. We leave that exploration past our
proof-of-concept implementation for future work.
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working against FROST can be reduced to a adversary Ay, in Schnorr’s signature
scheme, and vice versa. We follow the proof strategy used by Stinson and Strobl [20]
to demonstrate the security of their scheme in which a DKG is used to generate the
shared random value in both key generation and signing phases. We adapt this proof
strategy to our setting, which uses additive secret sharing and share conversion when
generating a shared-but-secret random nonce during signing operations.

7.2.1 Notion of Security

We begin by highlighting two important features of the Stinson and Strobl proof strat-
egy. First, the adversary is playing the EUF-CMA (existentially unforgeable against a
chosen message attack) game: the adversary is given a signing oracle to which it can
pass arbitrary messages, and the adversary wins if it can produce a valid signature on a
message not passed to that oracle. In the single-party setting, that signing oracle simply
produces the signature, but the multi-party setting, that oracle also produces the view
of the adversary: any private values chosen by the ¢ — 1 compromised participants, and
the public values sent by the honest participants.

However, one important feature of this model is that the adversary does not get to
manipulate the inside of the oracle. In particular, it cannot choose its private inputs in
an oracle call based on the outputs of an honest participant. This is indeed where the
Drijvers et al. attack fits, and why we limit the parallelism v in our first two variants to
defeat it. On the other hand, in our third variant, by forcing the adversary to commit to
its inputs before the signing oracle is invoked, we restore the fidelity of the model and
we no longer need to limit 9.

The second important feature of the Stinson and Strobl proof strategy is that the
proof is a reduction for the end-to-end protocol, including both key generation as well
as signing steps. In particular, the adversary is not passed a public key as input, but
rather the adversary participates in the key generation protocol to output a public key.
The proof, as we will see below, then proves that for any adversary Agy..,, against
FROST that outputs a forged signature with a certain probability, given that the key
generation algorithm outputted the public key Y, there is (the usual) adversary Ay,
against single-party Schnorr signatures that inputs the same public key Y, and outputs
a forged signature with the same probability. It is the group public key, and not an
honest participant’s public key, that matches the public key for the single-party case.
In this way, Stinson and Strobl’s proof strategy avoids the metareduction of Drijvers et
al. [5].

We therefore aim to prove that an adversary Agy,.q against FROST can be simu-
lated by an adversary Ap,,, against single-party Schnorr, and vice versa. We assume
Afpres, can compromise up to ¢ — 1 participants. To simulate the role of honest par-
ticipants during the key generation phase, we use a simulator STM as described by
Gennaro et al. [8] to simulate the honest participants.

7.2.2 Adversary View

We now describe the view of A7y, during the execution of key generation and signing
operations in FROST.
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During key generation, the view of Azy,.g, includes the following:
1. For the ¢t — 1 corrupted participants:

L.a The coefficients cvp, . . ., a4 —1) defining the secret polynomials f;(z).
1.b The secret shares j, f; (7).

2. For all ¢ participants:

2.a The public commitments C_'; forl <:<n.

2.b The long-lived public key Y; for each participant, as well as the group public
key Y.

During signing operations, the view of Az, includes the following:
1. For the ¢t — 1 corrupted participants:
1.a The private nonce values d; for the t — 1 corrupted participants.
2. For all ¢ participants:

2.a The message m, and the set S comprising the identifiers for all participants
selected for the signing operation.

2.b The public commitment shares D;, i € S.
2.c The group’s commitment value R, and the challenge ¢ = H(m, R).

2.d Each participant’s response z;,¢ € .S, and the signature o = (> z;, ¢).

7.2.3 Unforgeability

Again following the proof strategy of Stinson and Strobl [20], we demonstrate a reduc-
tion between an adversary in the threshold setting that can produce a chosen message
attack and a adversary in a single-party setting producing a valid forgery for normal
Schnorr. By demonstrating the reduction between these two adversaries, we demon-
strate that FROST is as secure as single-party Schnorr in its security against a chosen
message attack in the EUF-CMA model.

We now provide formal definitions of Azyesn and Ay, as similarly defined by
Stinson and Strobl [20].

Definition 1. Let Az, be a probabilistic polynomial time adversary who has the
power to corrupt up to ¢ — 1 participants, and let B denote the set of identifiers for these
t — 1 corrupted participants. Consequently, Az, can view both the private and public
values for P;,+ € B during protocol execution. This adversary also has access to ¢ par-
ticipants (including the corrupted ones) who perform signatures on a message m and
public key Y, assuming the key generation protocol outputs Y. Let Azpen(G, ¢, V|Y)
denote the random variable that takes the value (m, ..., m,, (M, 7)) with the proba-
bility that the adversary Az s, given the group parameters and the view V from the
key generation phase, will query the signing oracle with the messages (mq, ..., m,)
and output a valid signature & on an unqueried message m, conditioned on the group
public key being Y.
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Definition 2. Let Ay, be a probabilistic polynomial time adversary who can query a
signing oracle with a message and public key (m,Y") and receive in return a signature
o that is valid under Y. Let Ayym(G,q,Y) be the random variable that takes the
value (my, ..., m,, (m,d)) with the probability that the adversary Ay, given the
group parameters and the public key Y, will query the signing oracle with the messages
(ma,...,m,) and output a valid signature & on an unqueried message m. Note that
in the single-party setting, the adversary does not have a view into the key generation
phase.

Again similarly to Stinson and Strobl [20], we prove that any instantiation of a
single-party adversary Ap,., can be simulated by our threshold adversary Agy,.s, and
vice versa. We start with the easy direction.

Theorem 7.1. For any adversary Ay,m against single-party Schnorr, there exists an
adversary Afppesn against FROST such that

Pr[AThresh(GaQa V|Y> = (mh cees My, ( T 76))] =
PF[ANOI‘m(quy Y) = (mlv ceey My, (T?L, 6))]

Proof. We demonstrate how to construct Agyesn given Anorm. Arnesn starts by exe-
cuting the key generation phase of FROST honestly. Let Y be the resulting public
key.

Afpresn begins by invoking Ap,mm on (G, q,Y). To simulate the single-party signing
oracle to Ay, for a message m;, Amesn asks t participants to issue a signature over
m,; and returns the output m;, ;. Having been supplied its initial parameters and the
signing oracle by A7presn, Anorm can subsequently perform its chosen message attack.
Consequently, Az, Will output m, & when Ay, outputs m, 7. O

We follow a similar approach to Stinson and Strobl [20] to prove the relation in the
opposite direction: that any threshold adversary A7y, can be simulated by a single-
party adversary Ap,,». However, while the proof by Stinson and Strobl required use of
the simulator STM to simulate the behavior of honest participants during the signing
phase (as their construction makes use of a DKG), our proof allows Ay, to fully
simulate the view for Agyeg, including the public values for the honest participant,
simply by using its access to the signing oracle and information obtained from the t — 1
corrupted participants.

Theorem 7.2. For any adversary Aty against FROST in a threshold setting, there
exists an adversary Ayop, in the single-party Schnorr setting such that

Pr[ANorm(Ga q7Y) = (m1> ey, My, (m75))] =
Pr[AThresh(Ga C],V|Y) = (ml> s, My, (mva-))]

Proof. We demonstrate how Ap,,,, can be constructed given Ay esn. Anorm Will sim-
ulate the honest participants to Az, and provide access to the single-party signing
oracle.

Anorm begins by invoking Azpes, sending G, q. Aqpresi performs the key generation
stage, interacting with the simulator ST M resulting in the group’s long-lived public key
Y.
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Arnresi, then begins its chosen message attack using t — 1 corrupted participants
and one honest participant. When Azy,.q, queries its ¢ participants to obtain a signature
over m;, Ayor, must be able to produce a correct transcript (Dj, and zj,) for the honest
participant. Ay, first queries its signing oracle with the input (m;, Y") and obtains o.
To compute the honest participant’s public commitment share Dy, Ay, first computes
R = g% -Y ¢ where 0 = (z,c). Next, Ay, computes D}, by computing:

D= mif5m

Note that this step is where our first two FROST variants require the adversary to be
bound within the EUF-CMA game’s signing oracle model, and consequently assume
the adversary supplies its inputs, including the d; values for the compromised partic-
ipants, to the signing oracle before seeing the honest participant’s Dj. As discussed
above, our third FROST variant allows for an adversary not bound to this model, and
remains secure by requiring zero-knowledge proofs to bind all participants’ choices of
d; in advance of seeing other participants’ D; values. In this latter setting, the honest
party’s zero-knowledge proofs are simulated by Apg,y,-

Anorm computes the response zj, for the honest participant using similar techniques
(recall that z = ) z;):

zh=2z—3 jep(dj+Aj-sj-c)

With these values, Ay, can provide the complete view to Agpes, to perform its
chosen message attack. O

7.3 Aborting on Misbehaviour

As discussed above, the goal of FROST is to save communication rounds (particularly
at signing time), at the cost of sacrificing robustness. If one of the signing participants
provides an incorrect signature share, A will detect that and abort the protocol, if A is
itself behaving correctly. The protocol can then be rerun with the misbehaving party
removed. If A is itself misbehaving, and even if up to ¢ — 1 participants are corrupted,
A still cannot produce a valid signature on a message not approved by at least one
honest participant.

8 Future Work

Alternative Commitment Binding Technique. As described in Section 6.5, imple-
mentations of FROST can be unlimited in concurrent signing operations so long as
all participants can be bound to their commitment shares before viewing those of other
participants. While we describe two techniques to achieve this binding, we now discuss
a future research direction for an alternative technique.

Ideally, from a single public value D,y output by participant P; during the key
generation phase, it would be extremely useful for the other participants to be able to
simply compute the subsequent D;; values, given each j. The difficulty in this approach
is ensuring forward secrecy: D;; should be computable from D;, and j (and possibly
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m as well), and d;; (such that D;; = gdiﬂ') should be computable from some private
state (held by P;) and j (and possibly m), but after d;; is used, it should no longer
be computable from P;’s private state. We suspect a technique akin to puncturable
encryption [11] could be used here, but we leave this to future work.

Formalization of Security Models. Because of the flexibility yet distributed na-
ture of multisignature schemes, the setting and threat model of implementations will
impact the acceptable security model for the scheme. While clearly erring on the side
of the strongest possible security model is generally the best approach, not all imple-
mentations of secret-sharing schemes require the level of security as is appropriate for
’strangers on the internet”; in fact, such settings may benefit from a relaxation in threat
model for improvements in efficiency or usability. Formalizing the security expecta-
tions of such divergent threat models can help protocol designers focus on ensuring
necessary security guarantees while preserving other tradeoffs such as performance or
protocol composability.

9 Conclusion

While threshold signatures provide a unique cryptographic functionality that is appli-
cable across a range of settings, implementations incur network overhead costs when
performing signing operations under heavy load. As such, minimizing the number of
network rounds when generating signatures in threshold signature schemes will reduce
the cost of network overhead, benefiting implementations such as those with network-
limited devices, where network transmission is costly, or where signers can go offline
but wish to perform a signing operation asynchronously.

In this work, we introduce FROST, a flexible Schnorr-based threshold signature
scheme that trades protocol robustness in exchange for optimizing the number of rounds
required for signing. We present three signing protocol variants. The first two variants
are limited in concurrency but efficient in per-user computation; the first reduces the
number of messages participants send and receive, and the second variant is a further
optimization to a single-round signing operation with a batched non-interactive pre-
processing stage. The third variant does not restrict concurrency of signing operations,
but is more costly in per-signature operations. We present two use cases demonstrating
examples when trading protocol robustness for improved efficiency is desirable for im-
plementations of threshold signatures, and discuss how aborting the signing protocol
is practical in these settings, so long as misbehaviour is detected and the misbehav-
ing participant is identified. We present proofs of security and correctness for FROST,
building on prior proofs of security demonstrating its security relative to Schnorr’s sig-
nature scheme in a single-party setting.
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A Two-Round Signing Protocol Without a Signature Ag-
gregator

Not every implementation may wish to utilize a signature aggregator role. Below, we
present a variant of the two-round signing protocol where all participants are trusted
equally.

Let S form the set of identifiers corresponding to the participants selected for the
signing operation, where |\S| = t. We assume participants have utilized an out-of-band
channel to obtain the message m which the signature is to be computed for, as well as
the set S.

Round 1

2. Each P; samples a fresh nonce d; € Zg.
3. Each P; derives a corresponding single-use public commitment share D; = g%.
4. Each P; broadcasts D; to all other participants, and stores (d;, D;) locally.

Round 2

1. Using the received public values D; where j € S,j # 4 and their own public

value D;, each participant computes the public commitment R = [[,_o D; for

the set of selected participants.

Each P; for i € S first validates the message m, aborting if the check fails.

Each P, computes the challenge ¢ = H(m, R).

5. Each P; computes their response using their long-lived secret share s; by com-
puting z; = d; + \; - s; - ¢, using S to determine \;.

6. Each P, securely deletes (d;, D; ), and then broadcasts z; to all other participants.

7. Each P; performs the following steps:

i€S

W

7.a Verifies the validity of each response by checking g* z D;-Y;*N for each
signing share 21, ..., 2. If the equality does not hold, first identify and
report the misbehaving participant, and then abort. Otherwise, continue.

7.b Compute the group’s response z = . z;

7.c Publish the signature 0 = (z, c¢) along with the message m.
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