Systemcall Inheritance

Ram, Maruthi and Hema
Sony Brook University

Abstract sign details and the various possibilities which we have

considered during our design in section [3]. In section
4] we present our implementation details. Sections [5]
nd [6] discuss the various use cases which can be sup-

In the Operating System world, system calls are a wa
for a user process to request services from the kerne

When a process makes a system call, a context switch, 104 by this feature and the related work in this area.

happens and the control shifts to the kernel. In Lin“X'FinaIIy, we conclude in section [7] followed by our fu-
the system calls are implemented through a predefinegJre work details in section [8].

system call handler. There exists a default base system

call vector whi(_:h hqlds the pointers to the differ_ent sys-o Background

tem calls. Unlike Linux, BSD supports dynamic over-

loading of system call vectors. In this paper, we presentn Linux, the system calls are implemented through an
a way to support this feature in Linux 3.2. Using our interrupt mechanism. There is a unique number associ-
implementation, a process can set its own system caftted with every system call. Every system call will have
vector which has its own system call implementations.its own predefined handler. The default system call vec-
Our design incorporates new system call vectors througk" syscall_table holds these handlers which are indexed
loadable kernel modules and we provide a system caly the system call number. When a user program issues
interface for the user process to dynamically change it& System call, itin turn calls a library routine. The library
system call vector. The complete details of our desigrfoutine issues a trap to the Linux operating system by ex-

and implementation are covered in the next sections. €cuting INT 0x80 assembly instruction. The system call
number and the arguments of the system call are passed

1 Introduction to the kernel by storing them in eax and other registers

; bx, ecx, etc.) respectively. The kernel then executes
In the world of operating systems, system calls are a wa ebx, ’ ;) .
P g5y y %he system call by invoking the handler obtained from

for a user process to request a service from the kerne h ILtabl d ret " It to th
Most of the major user level operations such as openin% € syscalllable and returns the resut to the user pro-
ram using a register.

afile, reading from/writing to a file, forking a process re-
quire a user process to request these functionalities fror$ Desian
the kernel. System calls are a means to do this. A use 9
process makes a system call when it needs a service froffhe main idea of our design is to support new system
the kernel. At this point, a context switch happens andcall vectors as loadable kernel modules (LKM). Any
the controls shifts to kernel. There are many variationsnew vector which needs to be added should be imple-
in the way the system calls are supported in various opmented as a LKM and inserted into the kernel. Since the
erating systems. For instance, the BSD operating systeqprocess taslstruct is unique for each process, we de-
provides to its user processes, flexibility for dynamic cided to store the vector information in the tastkuct of
overriding of the system call vectors. In contrast to BSD,the process which can be accessed from anywhere in the
the Linux operating system only supports a single predekernel using current pointer. New fields are added to the
fined system call vector sysall_table which is statically —process taslstruct to incorporate this feature.
loaded during the kernel boot-up. Every system call in We have defined a framework sgetsyscallvector
Linux corresponds to a handler and the set of all thesevhich is central for our design. This framework holds
handlers is stored in the system call vector indexed byall information about a newly added vector, its reference
the system call number. When the user process makeasounts and it does the updating of the process sslct
a system call by providing the system call number, thewhen a process requests to set a custom system call vec-
handler at the index equal to this system call number irtor. From here on, we refer to this framework as sysvec-
the syscall_table vector is invoked. Currently there is no framework. Every vector newly inserted has to regis-
way in Linux, to override the default system call vector. ter with this framework. This is required as the process
In this paper we set out to explore the ways to supporneeds to know the list of currently supported custom vec-
system call inheritance. Section [2] gives a brief back-tors in the system. The framework also handles the refer-
ground and motivation for our work. We present our de-ence counts of the vectors. A reference count (rc) needs

Gt g wecter g@ir from

YES

Gt Hhe newy sysiem rall
haiidlér fram the vedlor set

Gl the virap_ovmrride
AT, P Las b SLEUEE

]
¥
Garl the wra p opiass
indesred at the system
wall i

Save all registers

Call Hhe new warsp
handler

YES ® Call the new handler

Eaill systemn call handier

i il Bl

Ceongiy' -1 ik Pl
wslue in to pay

Restore all pegisters

Restore all regisbers ——=

Call default system call

to be maintained for a vector in order to avoid removal ofin the process tasktruct is set and if not the default sys-
the vector when a process is using it. A vectors referencéem call is invoked

count increases by one in two scenarios - if the vector pointer is set, then check if the new
1. when a process sets this vector in its proces&andler for the invoked system call in this new vector is

task struct set. If not, the default system call will be invoked
2. when a child process inherits this vector from its - if the new handler is set and

parent through fork() - the wrap-array in the tasitruct of the process is not
A vectors reference count decreases by one in one ciét, invoke the new handler

the following two scenarios: - the wrap-array is set and the type of system call

1. When a process exits, the rc of the vector is decrell! e wrap-array is override-systemcall (0), invoke the

mented. Updating the reference count requires lock"€W handler

ing on the rc variable in order to have synchronization - the wrap-array is set and the type of system call in
among multiple processes. the wrap-array is wrap-systemcall (1), then invoke the

2. When child wants to set its own vector, the refcount" W haf‘d'er first and on its return, based on the return
of the vector it inherited is decremented. value either call the default system call (if the return
We limit the number of times a process can set its vec-Value of the wrapper system call was a success - 0) or

. return -1 to the process that invoked the system call.
tor to one. Any further attempts by the process to set its
vector will return an error. This is to avoid any malfunc- 4 | mplementation
tioning of the system calls. When a process is fork-ed()]])))
even though the child process inherits the vector set the implementation details of our design are explained
its parent, it can still set the vector of its choice through!n this section. We worked on Linux 3.2.2 version.
the framework once. This information about whether 4 1 Adding a new system call vector
the process has already set the vector once is stored in)
the process tasktruct structure. The first step _of o_ur_approach is to add a custom system

As an added feature we are also supporting two type all vector which is implemented as a loadable module.

of system calls, wrap-systemcall and override- system- .h's .m;)hdule conS|sttsh of dtk}e Ttysterlnt c;ll vegtorh\{vr;]ose
call. A wrap-systemcall acts like a wrapper to the de-S12€ 1S the same as he defau sy8.table and whic

fault system call. It can be used to validate the inputs_r;?lld'.5 th? handtletr's forftfshe nevsr/]Iy Oc\jlleque? sydstem.calllj.
before invoking the actual system call. An override- h elmzelme_rllha 'ﬁn Odl efse tr?n erts |sas|c|J O?f 'r:]s' N
systemcall completely overrides the default system call. € module. The handier for the system calls which are

As a custom system call vector developer, one can denot being supported by this vector are set to NULL. The

cide whether a system call in the new vector should be ector that wgn_ts to supportthe wrap/overridg option can
have like a wrap-systemcall or an override systemcall.do so by defining a new boolean array of size same as

The vector will pass this information to the framework the sy;call,tab:e. A vrﬁlue gflo in this arr[ay indicates an
during the registration which will be set in the processoverrl ing system cail an represents a wrapper sys-

task struct when the process sets this vector. It is uptem call. Following is the information permodule which
eeds to be stored when the module is inserted:

to the vector developer to decide whether to support thé 1N fth ¢ Il vect listed to th
wrap/override option or not. Not setting this option im- - Name of the system call vector (as listed to the user

lies that all the system calls supported by this vector ar@rocess) -
Ey default overrid>i/ng system caIFI)E y 2. The reference count of the vector (indicates the

Following is the information per vector which is number of processes currently using this vector)

S . : 3. Address to the system call vector (pointer to the
maintained in our framework when a vector registers
new system call vector table)

1. Name of the system call vector 4. Address to the boolean array (pointer to the
2. The reference count of the vector wrap/override array which can be NULL)
3. Address to the system call vector We have defined a new structure syectordata
4. Address to the boolean array which represents the vector data mentioned above.
As we have seen in the previous section, when a sys- struct syscallvectordatg

tem call is invoked the system call nhumber is stored in atomict refcount;

the eax register and the handler in the_sgfl_table at char name[VECTORNAME _LEN];

the index same as the eax value is invoked. Now to in- void *vecptr;

corporate our design we modify the flow as follows int *b_wrap.override;
- before invoking the system call handler of the struct listhead mylist;

syscall_table, we will check to see if the vector pointer };

4.2 Registering with the framework vector. The process invokes this system call with the
In section 3, we have discussed how to create a new syQPtion value as OPVECTORLOAD and data pointer
tem call vector as a loadable module and that the inforS€t to the name of the vector. Depending on the vec-
mation about all such vectors must be stored. This mod!Cr N@me, its corresponding vector is obtained from the
ule provides an API addyscallvector which should sysVectors list and set in the process task structure.

be called by a vector to register itself with the frame—4 5 Modifying the Processtask structure
work. Our framework maintains a list sysVectors to

hold the pointers to sysectordata corresponding to We have updated the taskruct structure to hold these
all the existing system call vectors. Whenever a newdditional fields: 1. isrectorset boolean which indi-
system call vector module is inserted, a new pointer tofates whether the process has already set its vector by
sysvectordata is created and filled with the vector datainvoking the SETSYSVEC 2. sysvectorptr - address

and added to this list during registration. of the system call vector which the process wants to set
o 3. wrapoverride - the address of the boolean array indi-
4.3 Listing the system call vectors cating the wrap or override option

The central interface for our approach is provided as We limit the number of times a process can set its
a new system call sysetsyscallvector (int option, ~Ccustom vector by calling the SE$YSVEC system call
void* data) which has been implemented as a loadf0 one. To incorporate this, we have added the boolean

able module. From now on, we address this sys-variable isvectorset in the task structure which if set to
tem call as SEISYSVEC. The data pointer param- O indicates that the process has not set the custom sys-
eter acts as both in and out parameters dependin§m call vector and 1 indicates that the process has set its
on the option value. OPVECTORCOUNT and Vector. When isvectorset is 1, the process is blocked
OPT.VECTORLIST are options that must be used to- from further setting its system call vector. For a fork-ed(
gether. OPTVECTOR COUNT returns the number of) Process this value is by default set to 0.

syscalls currently loaded. OPUECTOR_LIST returns .

a (char **) of vector names. This (char **) buffer is al- 4.6 Invoking th_e system call _
located by user program based on the number of syscaWihen the process invokes a system call, the flow will
vectors loaded. We copy the vector names into the useieach the entry82.S file where certain modifications

buffer by copyto_user(). have been done to incorporate our feature. As men-
. tioned before, the system call number is stored in the
4.4 Setting a system call vector eax register and the parameters of the system call are

Any process which needs to override the_spdl_table stored in the remaining registers. We have added sup-
has to first set the vector in its taskruct There are many port in asm-offsets.c to generate the new MACROS
ways this can be supported namely, Tl _task, TSsysvector ptr and TSwrap.override, which
1. Using ioctl - For each loadable module which is represent the offsets of the tastcuct in the threadghfo
adding new system call vector(s), we can define an iocttructure, sys/ectorptr pointer in the taslstruct and
such that the handler for this ioctl is implemented in thewrap.override pointer in the tasktruct respectively. Us-
corresponding module. Any process which wants to setnd these macros, we get the tastkuct of the current
a new system call vector can call the corresponding ioctfunning process and its corresponding sgstor ptr and
to do so. But the drawback with this approach is that wethe wrapoverride pointers. And we do the required
will end up defining a new ioctl for each new loadable checking as explained in the design section.
module which is an overhead.
2. Defining a new system call - We can define a new4'7 Reference Counts
system call which when invoked by the process with theWe have reference counts maintained for the vector
vector name as input, will set the corresponding vectowhich indicates the number of processes which are cur-
for the process. rently using it. The rc of a vector is incremented when
3. Through exec() system call - A new wrapper call a process sets it or when a child is forked from a parent
can be added for the exec() system call which in additiorwhich has set this vector. The rc is decremented when
to the actual exec() system call arguments also takethe process using this vector exists. Removal of a vector
one more argument which is the name of the system calleturns an error if the rc of a vector is greater than 0.
vector. .
For our design we have considered adding a new -8 Locking
system call to set the custom system call vector. Thelo achieve synchronization among processes we need to
SET.SYSVEC discussed in the previous section alsoincorporate locking in to our framework. The reference
handles the functionality of setting a new system callcount variable can be modified by multiple processes.

Hence this variable has been defined as of type atdbmic modify any of the files. One such example can be an ap-
which handles the locking of reference counts internally.plication which spawns multiple children and execs new
The list of vectors maintained in the SESYSVEC programs. If we have to block these spawned processes
framework can be accessed by multiple processes at tfeom creating/ modifying/deleting files, we can define
same time. Hence there needs to be some kind of locka new system call vector which overrides the system
ing mechanism on this list. We have defined a read/writecalls creat/write/unlink which creates/modifies/deletes
semaphore for this list. Any process which needs to acfiles respectively. In these overridden system calls we
cess this list needs to grab this lock. Multiple processegan just return the error messages. This way we restrict
can read from this list concurrently by grabbing the readthe application from doing something undesirable.
lock but to update this list a process has to grab the write 2. Customizing the default system call behavior -
lock. Some users do not want the default behavior of system
. . calls. They want to implement their own functionality.
4.9 Modulevalidation This can be achieved by defining a new system call vec-
We restrict the system call vector developer from over-tor with customized system calls and setting this vector.
riding fork() and exit() system calls as it can break .
the (gxistiné])functionali(t)a ar):d also disturb the referenceﬁ'2 Wrapping the default system calls
count values of the vectors. Hence any loadable modul§ome applications might want to validate the privilege
which tries to support a new system call vector that islevels/parameters before invoking any system call. This
overriding fork or exit will get an error during insmod. can be done by defining a wrapper system call for the
actual system call which needs to be called. Some such
5 Usage applications are listed below.

Below are the steps to be followed to test our implemen- 1. Logging of system calls - In some cases, the user
tation. The paths mentioned here are relative to the homlight want to know what all system calls a particular

folder. application is using. In this case, they can define a new
1. Run make in hw3 folder which will build all the System call vector, with the system call handler set to
LKMs. their logging functions which will log the messages that

2. Firstly insert the sysector module (insmod) a particular system call has been invoked and return suc-
which represents the system call added to handle th6€SS: The wrapping facility will take care of invoking

vector modules. the default system call after the user provided logging
3. Insert the desired system call vector. Ex: VeC_function has been executed. So if a user wants to know
tor_logging.ko what all system calls a particular application is invoking,

g he can write a new program which will set this new sys-
tem vector and exec the target application for which he
5. The user files expect the name of the system callV

ants to find out what all system calls it is using.
as a command line parameter. For instance, to run the

4. Run make in hw3/usercode folder which will buil
all the user files.

2. Access denial to system calls based on user priv-

user file logging.c which needs to use the vector vecil®9€s - There might be scenarios where access rights

tor_logging, run the following command: $./logging tp certain operations_ like creation/deletion/updation of
vectorlogging files are to be provided to root user alone. We can

6. If no vector name is provided, the default achieve this functionality W.itl"l our approach. We can
syscall table will be used. define a new vectpr by providing wrapping system calls
for creat/write/unlink system calls which can verify the
6 UseCases user who has invoked these system calls and return an
))) error if the user does not have the required privilege lev-
The system call inheritance approach implemented iny|s |f the user does meet have the privilege levels, the
this paper can be used in two broad scenarios underlying default system call can be invoked.
6.1 Completely overriding the default sys- 3 Denial of some system calls based on parameter
tem calls vahdatyon - There are cases when create/dele}e/ update
operations are to be restricted on some files/directories,
As discussed in the previous sections, the vector develfor instance on the files in /root directory. The user
oper can set an option for a system call to completelycan define a new vector providing wrapping system
override the existing default system calls. This featurecalls for the creat/write/unlink system calls which cre-
can be widely used in the following applications: ate/modify/delete files respectively. These wrapped sys-
1. Restricting access to some system calls - Theréem calls can check the parameters to see if the file
are certain cases, when we need some application not fmassed is under the /root directory and if not, it can re-

turn error. In this way we can block modification accessbe modified to maintain a group id/user id list for each

to certain files. system call vector, indicating which groups/users can ac-
cess this system call vector. This can be provided while
7 Related Work inserting the system call vector module. So when a user

A system call is the way in which the kernel services aprocess tries to set a particular vector, its user-id can be
programs requests. Each flavor of linux would typically checked in the list and if the id does not exist in the list,
want to have its own wrapping/overiding mechanism towe can return an access denied error message.

support custom operations. However Linux does not al-, .
low modules to override system calls, mainly keepingg'2 Customized error for wrapped system
security in view. Most of the overriding in Linux is done calls

using System call interception, but replacing the vectorn the current implementation, even though the wrapped
itself is not encouraged. BSD allows overriding by in- system calls return an appropriate error number, we are
heriting the system call dispatch vector per process. Aeturning a standard error "-1” to the user program. We
policy can make a new process use an entirely new setan support this feature by making changes to the assem-
of system call vectors. The system call vector containsly code to store the state of the program before calling
a list of sysent[] entries whose addresses reside in théhe wrapped system call. Once done with the wrapped
kernel module. Each sysent entry corresponds to a cusystem call, if it returns a value other than 0, we change
tom system call vector and contains the number of arguthe stored stack state to contain the returned value, by
ments, implementing function, audit events and generapopping eax from the stack state and pushing the return
flags associated with the system call. When a systemalue in place of eax. Once the return value is pushed
call is invoked, the trap code dereferences the systeron to the stack, we can restore the stack state and go

call function pointer off the process task structure. to the end section of the system call. For this we need
) to write a modified SAVEALL and RESTOREREGS
8 Conclusions macros. The current SAVBLL macro pushes eax reg-

In this paper, we provide a framework to override theister first which makes it difficult to modify eax to con-
default system call vector sysall_table in Linux ker- tain the error value from wrapped system. To overcome
nel 3.2.2. This feature provides the user process to dythis problem, new custom macros MSAVE_ALL and
namically choose a new system call vector thus makMY _RESTOREALL need to be defined which will
ing it feasible to have functionalities different from the push the eax value in the end and pop it in the beginning
ones present in the default system calls. We providedespectively. Thus the MSAVE ALL will be push-

this framework in the form of a system call which the ing the error number present in eax on to the top of
user process can invoke to set its own vector. Internallythe stack and when we get an error value from wrapped
our approach also supports both wrapped and overridsystem call, we pop the top value from stack and push
den system calls which can be controlled by the vectothe error number on to the stack. When we call our
developer. As discussed in the previous sections, variMY _RESTOREREGS, it first pops the eax value, which
ous security applications can use this feature to imposeontains the error message followed by the other register

access control rules on the users. values. For this to work, we need to change the prototype
of our new custom system calls to contain the system
9 FutureWork call number as the first argument because the top most

There are certain aspects like the permission checks fofalue on the stack is the eax, which contains nothing but
setting the system call vector and customized error valihe system call number. We have implemented this in
ues for wrapped system calls and which we have not in@ur current project, but it is not fully teste_d. Hence, the
cluded in our current implementation. These featured'®Wly modified entry32.S is not checked-in. Our future
can be incorporated in our model in the future to im-Work would be to test this implementation.

rove the efficiency of our approach. The details of these -
?eatures are explained below. 10 Bibliography

1. Understanding the Linux Kernel. Authors: Daniel P.
9.1 AccessControl for System Call Vectors goyet Marco Cesati
Our current implementation does not perform any per- 2. An Advanced 4.3BSD Interprocess Communica-
mission check on the user who is setting the system caliion Tutorial. Authors: Samuel J. Lefer, Robert S. Fabry
vectors. Any user program can set any system call vecWilliam N. Joy, Phil Lapsley
tor. We can implement access control for the system 3. Design and Implementation of the 4.4 BSD Oper-
call vectors, to restrict certain user programs from setating System. Authors: Marshall Kirk McKusick, Keith
ting certain vectors. The existing implementation canBostic, Michael J. Karels, John S. Quarterman.

4. Intrusion Detection using Sequences of System
Calls. Authors: Steven A. Hofmeyr, Stephanie Forrest,
Anil Somayaji, Dept. of Computer Science, University
of New Mexico

5. Fine-Grained User-Space Security Through Vir-
tualization. Author: Mathias Payer, Thomas R. Gross,
ETH Zurich, Switzerland

