
Linux - System Call Inherit

Group 12
Prankur Gupta Sumit Bagga Abhishek shukla

108492684 108235636 107598884
{prgupta, ssbagga, ashuklaravis}@cs.stonybrook.edu

April 29,2012

1 Abstract

System calls provide the interface between a process and the operating sys-
tem (kernel). We as a user process, can request kernel to perform some
previleged tasks, by calling these system calls. When a user process invokes
a system call, the CPU switches to Kernel Mode and starts the execution of
kernel function. There is a set of such system calls defined in Linux, repre-
sented by a unique system call number. For each of these system call, there
is a unique system call handler. Any changes in the system call or their han-
dler, must be followed by recompiling the kernel so that the changes can take
affect. So, it is neither easy to change or add a system call as per users need,
nor does Linux provides some implementation for doing that.Adding a new
system call to the kernel and then creating programs that use this call take
away the program’s portability. Adding a system call can also introduce a
serious security problem into your system. The best solution is to write our
own system calls but adding them statically or even as a module requires
changes in the kernel code which may cause inconsistency and takes away
kernel portability. Unlike Linux, BSD provides facilities to override the de-
fault system call vector. We aim to provide user an additional functionality
to override the system call vector and also its subsequent child processes
will also use that overridden vector only. For this we created a module to
register and deregister the vector names, which have the overridden system
call number and their function implementation. The user can choose to use
the overridden system call vector through ioctl, which populates the private
data field of task struct of that process with the address of the list of system
call and their function implementation.

1



2 Introduction

In Linux, accessing the sys call table by user process or even LKM (Lodable
Kernel Module) is not possible. And in order to add a new system call we
need to add an entry in the syscall.h. But there can be a need of adding
new functionality in form of system calls. So, we need an implementation for
providing that functionality. We came accross many ideas for implementing
this e.g.

(a) creating a new system call for this purpose,

(b) intercepting system calls in user level library,

(c) overriding the global system call table.

Among these three, we decided to go with the last one, as it seemed rea-
sonably better in accordance to what we aim to achieve. It is sometimes
required that an application wants its processes to use a set of system calls
only and might want their own implementation of those system calls, e.g.
An application while calling exec() might want to log this information in a
file, so we can wrap their exec() syscall to do this task.

Now, if we want to override the global system call table then we need
to identify which process needs what additional functionality. We can’t just
create another syscall table and ask our process to use that if they needed
additional functionality. We needed a way to generalise it. So, we decided
to create new overridden system call tables on per process basis. As this
provides user specific functionalities.

We are maintaining a per-process system call vectors information in the
private field of their task struct. The process needs to choose the system
call vector beforehand i.e. before calling any system call, through ioctl of
the ”ioctl device” character device loaded also via module. The list of all
the possible overridden system call vectors can be available in ”/proc/”
filesystem. The reason for choosing ”/proc/” filesystem is because its easy
to understand and handling kernel internal data structures inside it is also
easy. A user process can override the default sys call table with any of these
registered system call vectors. Once a user process task struct is populated
by the address of the syscall vector′s address, whenever this process calls
a system call, we access the overridden or wrapped functionality as desired
by user. Now when a process is forked or cloned, the task struct is copied
to its child, so the child will perform as a shadow of its parent whenever it
calls the overridden system call vectors.

2



3 Background

Each system call has a unique number by which it is represented and a
unique handler (internal kernel data structure). This unique number is
what is stored in the eax register before control is given to kernel code.
Each system call has to follow two fixed intructions i.e. sysenter and sy-
sexit. They represents the entry and exit of the kernel control of the system
call. Whenever a user process requests for privileged access through sys-
tem call, an interrupt is generated int 0x80. After this interrupt, context
switch happens and all the interrupts are disabled. The interrupt calls the
respective system call defination through sys call table based on the value
of the eax register. When the desired work is done, the control passes to
user space after executing sysexit and the interrupts are enabled again.

4 Motivation

System Call Inheritance can prove to be a powerful scheme and can have
the following applications:

a) System calls can be modified to suit application specific usage of the OS.
For Ex Logging, Profiling etc
b) Security Applications: Depending on the security level of the user, the
set of system calls allowed can be different.
c) Additional functionality can be added to the existing system calls fairly
easily, maintaining the portability of the kernel. Kernel capable of allow-
ing a user to extend system calls without changing the behaviour of other
applications on the system is required.
d) BSD has the feature of overriding system call table at a process level thus
allowing access to kernel data structures without having a risk of writing an
unsecure or bug prone kernel code.
e) By this approach a user can extend system calls without changing be-
haviour of other applications on system.

This can provide portability of kernel and ease of performing desired priv-
iledge work, without modifying a lot of kernel code.

5 Major Features

(a) System call overriding: User defined functions are overridden when nor-
mal system calls are made. This paper discusses one of the possible
ways to bring this functionality into the linux kernel.

3



(b) System call wrapping: Even though it easy to implement system call
wrapping once system call overriding is implemented, it proves to be
important; a feature that could be used for loggin purposes.

(c) System call inheritance: The system call vector which is used to override
the system calls in the parent will be inherited into the child process.

(d) Ioctl: We have used ioctl to add the overriding system call vector to
the processes task structure. We chose to use ioctl and not a modified
version of exec as we can add/remove/change the system call vectors at
runtime.

(e) Helper functions: We have added all the required helper functions to
register, unregister system call vectors etc.

6 Design

In this section we are discussing about our approach to acheive our desired
aim. We have designed two primary modules and two helper modules for
testing

a) Module to register and unregister the system call vector
b) Module for a character device through which we would be sending ioctl’s.
c) Two modules as an implementation of new system call vectors having
overridden or wrapped syscall functions.

In the first module and most important reg unreg.ko, we are regiter-
ing/deregistering the system call vector. These vectors are visible to the
user in the proc filesystem in the file named as syscall vectors. We cre-
ate a file in proc filesystem using create proc entry() function and defines
pde→ read proc by our own implemented function i.e.show vectors.

Proc filesystem is used because we do not require users to write in the
file, or do any other file operations. Further proc filesystem allows an easy
hook to data structures defined in kernel. Also provides easy way to access
them using callback functions available like read proc and write proc. Here,
write proc is not implemented since we don’t want user to write anything
to our data structures. This module contains four exported functions:

int register syscall(char *vector name, unsigned long vector address); (1)
int unregister syscall(char *vector name, unsigned long vector address); (2)
unsigned long get vector address(char *vector name); (3)
int reduce ref count(char *vector name); (4)

4



As the name suggests, they are used for registering, deregistering ,show-
ing the registered vectors and reducing the refererence count of the vectors
used which are defined in syscall vectors file in proc filesystem. We are
using mutex on list lock to protect accesses of registering / deregistering /
showing / reducing reference count of the vector. We are using the following
structure of vector :

struct new vector {
char vector name[MAX VECTOR NAME LEN];
unsigned long vector address;
int ref count;
struct module *vector module;
struct new vector *next;
};

where,
struct module * stores the information of the registering module
vector address contains the address of the syscall vector structure

struct syscall vector {
struct overridden syscall sys call;
struct syscall vector *next;
};

struct overridden syscall {
int syscall no;
unsigned long function ptr;
};

The second module proc test.ko is for registering the character device
ioctl device with Device number 121. This device is used for sending two
ioctl’s namely IOCTL SET VECTOR and IOCTL REMOVE.

IOCTL SET VECTOR when called, increases the reference count of this
module and retrieves the vector address of the desired vector name through
externed method (3) which in turn increases the reference count of that
vector and adds that address into the new void * field created inside the
task struct of the calling process. The added field in the task struct is void
*syscall inherit data.

IOCTL REMOVE when called, removes the particular vector name from
the task struct of the calling processm and also reduces the reference count
of the vector name and also calls module put(), thus decreasing the reference
count of the module itself.

5



All these functions of adding/ removing the vector address in the task struct
of the calling process are safeguarded by a mutex lock.

The module link vector.ko and file ops vector, create a system call vec-
tor i.e. syscall vecter structure using a set of system call numbers and
their function implementation address, which we want to override. It then
registers the vector by calling the exported function (1). Similarly, it can
unregister the vector, by calling (2).

Apart from this, we have created a call to our defined function inside
system call entry code in entry 32.S, which checks whether the void* field
of task struct is NULL or not.

7 Implementation

We now give the implementation details of our design. We used Linux
3.2.2+ kernel for our implementation. For every system call , the kernel
jumps to the appropriate handler in the sys call table, based on the system
call number. The system call number is stored in the eax register. The
system call table is in the form of linked list. We search for system call
handler corresponding to the number. The parameters to the system call
are passed in the kernel stack and we define handler as asmlinkage function
which informs compiler to take arguements from the stack. After return
from the handler, the return value is stored in the %eax register.

We check the void * fieldof the task struct of the process, whether it is
NULL or contains the address to the syscall vector. If it is NULL, I’m
passing the control as it is, %eax register containing a fixed return value,
which is then replaced by the value of original %eax registered popped from
the kernel stack. If it’s not NULL, we push the passed arguements calculated
by %ebp into the kernel stack space. If the system call number exists in the
overridden vector, we call our implementation of the system call, which uses
the arguements directly from kernel stack as it is defined asmlinkage, and
send the return value in %eax register, which is in turn returned as the final
return value of our function.

7.1 Module for registering vector

In this module, we provide four functions which are exported as explained
in design part. The function of the this module is to register and de-register
the vector name in the /proc file system. In this file system, we have a
new file syscall vectors which contains all the registered vector names. In

6



this module we also define our own function implementation of read proc
present in proc dir entry so to provide user a facility to cat the registered
system calls.

The function to add new vector (1), allocates a new new vector struc-
ture, populates the fields, with reference count = 0 initially and add the
desired vector to the list of registered vectors. This is the function called
by any module which wants to add new system call vector/table to the list
of other vectors. The use of struct module* pointer is to check whether
some process is using the vector, and thus that module stste is busy. The
reference count of module is handled by try get module() and module put()
on that struct module* pointer.

MUTEX lock has been taken before adding the vector address to the
list to ensure mutual exclusion. We want only one module to use this API
at a time.

The function to deregister the required vector(2), traverses the list and
find the location of desired vector, and removes the vector from the list of
vectors only if its reference count == 0. If succeded, it will remove the
vector and deallocate the memory taken by vector. This operation is also
protected through MUTEX.

The function to retrieve the address of the desired vector (3), is called
by ioctl module when a process wants to include the vector address to its
private data field. If the vector is found in the list of registered vectors,
the reference count of the module implementing it, is incremented by calling
try module get() to make sure that the module is not unloaded, and also
the reference count of that particular vector goes up by 1. This operation
is also protected through MUTEX.

The function to reduce the reference count on the vector (4), is also
called by ioctl module, to reduce the reference count of the vector. This
indicates that the process no longer wants to use that overridden system
call vector. In this case we will also do a module put() on the module using
this vector, which in turn reduces the reference count of that module too.

7.2 Adding system calls in vector

This module implements a particular set of system calls which the user want
to override in a fixed vector name. Two example modules link vector and
file ops vector are created. A vector struct syscall vector is a linked list
of all the system calls, which the user wants to override , they are defined
as struct overridden syscall.

The vector contains all the system calls that this module wants to over-

7



ride or wrap defned by the struct overridden syscall structure which con-
tains the system call number and the address of its function implementation.
Overridden functions are declared as asmlinkage to tell the compiler that
arguements to the function of the new system call are to be taken from
kernel stack.

7.3 Communicating via IOCTL

The process in order to override the system call, needs to fill its task struct’s
private field (void *syscall inherit data) with the address of the structure
syscall vector, which it wants to override. So in order to achieve this, we
created a character device and our process used the ioctl() system call for
this device to populate its task struct.

The device created is registered in /proc/devices with major number
121(randomly chosen). Before making ioctl system call device file needs to
be created in /dev file system. For that mknod command is used.

syntax : mknod < device file path > < device type > <
major number > < minor number >

The device ioctl device, defines two ioctls IOCTL SET VECTOR and
IOCTL REMOVE, to set and remove the address of the syscall vector
structure from current process’ task structure.

IOCTL SET VECTOR - This ioctl is used by user process to pass the
vector name to this module, where this module finds the corresponding
address of vector in the list of registered vectors maintained by reg unreg
module, and adds that to the task struct of the process. It increases the
refrence count on itself after setting the task struct.

IOCTL REMOVE - This ioctl is used by user process to clear its private
data field, and which in turn also reduces the reference count of the vector
name, and the module itself.

In order to maintain consistency of system, both the IOCTLs must be
called by user process. IOCTL SET VECTOR marks the beginning of usage
of overridden system call function table. IOCTL REMOVE marks ending
of its usage.

Here also, we have used MUTEX for locking the access to the task
structure of the current process.

7.4 Calling new system call handler

In the existing system call handler, the arguments are pushed on to the
stack. The %eax register will have the system call number. In practice,

8



entry 32.S calls the syscall table with syscall number in %eax. Syscall
table uses %eax as an index/offset for the table and then calls the respective
memory location in which the actual system call is present. System calls are
declared as asmlinkage forcing the kernel to take the arguments from the
kernel stack.

In order to call our function implementation, we first send the control
to our function do syscall inherit check from entry 32.S, where we check
whether the private data field of task struct is NULL or not. But before
calling we push %eax into stack to retain the value even after we call our
own function which tests if a system call is overridden, as we need the %eax
value if we find that the function is not overridden, to call the actual system
call. [Refer : 1 on 17 ]

Inside do syscall inherit check, we first push all the register values(to
maintain their state in case the system call is not overridden) on to the
stack and then checks if the desired system call is overridden or not. If the
system call is overridden, we call our function implementation by passing
the address of the function into %eax register and calling it. Otherwise,
we return −9999 into %eax register. But before returning, we pop out all
the values from the stack which we pushed during the intial phase in our
function.

After we return from our call, we compare the return value in the %eax
register with the top value in the stack (original value %eax register which we
pushed before our call to do syscall inherit check in entry 32.S. If found
that it is overridden, the call to syscall table is skipped, the %eax value
that is pushed earlier is popped into a register (it should not be popped
into %eax, we used %ebx) and normal execution is continued. If the system
call is not overridden, the earlier pushed %eax value is popped into %eax
and a call to syscall table is executed and the instructions in entry 32.S are
excuted as it would have for a normal system call.

7.5 Arguements Passing

System calls are declared as asmlinkage forcing the kernel to take the ar-
guments from the kernel stack. We use this same concept and declare the
function implementation of overridden system call as asmlinkage. For these
overridden functions to work properly, we prepare a stack frame as the ker-
nel would do by pushing the arguments in the right order. We push the
original function arguments into the stack by doing some arithmetic oper-
ations on the base pointer. [Refer : 2 on 18 ] We then call our function
implementation of the overridden system call, this is done by moving the

9



address of the function implementation into %eax register and then making
a call to it. After the function call, we get the return value of the system
call function in %eax register, we copy it as the return value of our function
i.e. do syscall inherit check, pop out all the values that we have pushed
as arguments to the overridden function, and finally return to entry 32.S.
So, now %eax register is populated with the return value of the function
do syscall inherit check, which in turn stores the return value of our func-
tion implementation of overridden system call.

8 Limitations and Advantages

(a) We are using ioctl as our method of communicating the vector name to
kernel so that the ioctl device module can find the vector address cor-
responding to vector name and add it to the task structure. Along with
adding to task structure we are also incrementing the reference count of
module implementing the vector asked for by doing a try module get()
on that module.

To reduce the reference count we have to have some mechanism to know
when the user process ends, which is not possible unless we monitor state
of that process continuously. So instead, we created another IOCTL
which the user process will explicitly call to notify the kernel to strip
the vector address from the task structure of that process. In this call
itself we reduce the reference count of the module, implementing the
vector, by doing module put() on that module.

Now the drawback in this approach is that the user process has to explic-
itly do a remove vector ioctl call so that reference counts are updated.
So, if the user process, having new vector address in its task structure,
is killed in between, while it is still working, will leave all modules in
inconsistent state. (But this scenario will cause modules to be in in-
consistent state, if we had used our own defined exec system call, other
approach that we mentioned in proposal.)

Also this can’t be called a drawback completely, it has a hidden advan-
tage as well. It allows a user process to decide when it wants to use the
overridden system calls and when original system calls. So, in a single
process execution a process can call IOCTL SET V ECTOR to use one
vector at one time say ’file ops vector’ then call IOCTL REMOV E to
remove it and then again call IOCTL SET V ECTOR to use another
vector say ’link vector’ and then remove it as well and use third vector

10



or use original system calls altogether.

This way single process at multiple times can use multiple vectors or
original system call depending on user requirements. Also, observe that
this is an advantage of using ioctl over our own defined exec system call,
which takes in only one vector at a time and will use that throughout
its execution.

(b) Other limitation is that, since we have made a change in entry 32.S
to change the flow of execution of system call interrupt to have a check
whether the process is using any overridden vector or not, this makes our
implementation architecture dependant. But again, this is not much of a
drawback, because otherwise also, for normal execution all architectures
have different way of handling the system call interrupt. That makes our
implementation an adhesive part of normal system call interrupt, and
a more reliable and stable way of implementation for future standard
implementation of system call inheritence.

(c) One more drawback of having a new call do check syscall vector in
entry 32.S, which checks for void* syscall inherit data in task struc-
ture if it is empty or not, is that now a lot of CPU cycles are wasted
in calling the function and doing the check. If we are inheriting only
say 5 system calls, this check being made for all the system calls by
any process, consumes lots of memory cycles and affects performance.
We here leave a scope of improvement over this approach for future
implementations and ideas.

9 Conclusion

With the advent of Linux Kernel, the maintainers have made it more and
more difficult to change the flow of system calls, may it be adding new
system calls or system call overriding. In order to keep people from doing
potential harmful things sys call table is no longer exported. In this paper
we propose a mechanism to define new syscall vectors in which the existing
system calls can be overridden or wrapped. We maintain the asmlinkage
functionality in the kernel by adding statements to maintain the kernel stack
and by declaring the overriding/wrapping functions as asmlinkage. Since
the users usually override/wrap few system calls only, we chose to add the
syscall vector as a linked list and not as an array. This, not only helps us
in adding other information necessary with the overridden/wrapped system
calls but also saves precious kernel memory. We chose to implement an ioctl

11



instead changing the existing exec(and alike) or having a new version of exec,
for maitaining kernel portability. We do this to provide an user the ability
to change/remove syscall vectors at runtime. Also, we have implemented
the inheritance of this new syscall vector that we have added by making
changes to the process task structure; by adding a void * field at the end
of the structure thus making sure that we don’t disturb the existing kernel
code. We have successfully tested scenarios which we think are apt and
these have been mentioned in appendix A.

10 References

(a) http://lxr.fsl.cs.sunysb.edu/linux/source/

(b) http://www.informit.com/articles/article.aspx?p=370047

(c) http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.

html#s2

(d) http://www.cs.lmu.edu/~ray/notes/x86assembly/

(e) http://articles.manugarg.com/systemcallinlinux2_6.html

(f) http://www.win.tue.nl/~aeb/linux/lk/lk-4.html

(g) http://linux.die.net/lkmpg/x978.html

(h) http://kernelnewbies.org/FAQ/asmlinkage

(i) http://kernelnewbies.org/FAQ/asmlinkage

(j) http://stackoverflow.com/questions/10060168/is-asmlinkage-required-for-a-c-function-to-be-called-from-assembly

(k) http://www.win.tue.nl/~aeb/linux/lk/lk-4.html

(l) http://www.csee.umbc.edu/~chang/cs313.s02/stack.shtml

12

http://lxr.fsl.cs.sunysb.edu/linux/source/
http://www.informit.com/articles/article.aspx?p=370047
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html#s2
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html#s2
http://www.cs.lmu.edu/~ray/notes/x86assembly/
http://articles.manugarg.com/systemcallinlinux2_6.html
http://www.win.tue.nl/~aeb/linux/lk/lk-4.html
http://linux.die.net/lkmpg/x978.html
http://kernelnewbies.org/FAQ/asmlinkage
http://kernelnewbies.org/FAQ/asmlinkage
http://stackoverflow.com/questions/10060168/is-asmlinkage-required-for-a-c-function-to-be-called-from-assembly
http://www.win.tue.nl/~aeb/linux/lk/lk-4.html
http://www.csee.umbc.edu/~chang/cs313.s02/stack.shtml


Appendix

A Test Cases

We plan to have the demo with two syscall vectors that we are adding:
1. file ops vector

a. open(wrapped) : prints the arguments passed and returns a value
indicating that open is only wrapped

b. fchown(overridden): prints the arguments
c: read: (overridden): puts data(random text) in the data buffer passed

by the user.

2. link vector
a. link(overridden): prints old pathname and new pathname
b. unlink(wrapped): prints some statements and returns indicating that

this call was just overridden

Test1:
User Program has the new system call vector: file ops vector.
User Program calls:
1. open with test1 file, O CREAT and 777 as arguments.
2. read with as arguments 100(random file decriptor), user buffer, 200(read

size)
3. fchown with 11,22,33(all random) as arguments

Expected Output:
1. Since open is just wrapped, the arguments are printed on the screen

from the wrapped function and original system call is called thus creating
the file, test1 file

2. the overridden read function puts text: randomtext into the user
buffer.

3. Prints the arguments.

Test2:
User program has a new system call vector: link vector.
User Program calls:
1. link with link old and link new as arguments
2. unlink with test1 file as arguments.

Expected Output:
Since link is just overridden, the arguments are jsut printed.
Since Unlink is wrapped, some statements are printed inside the wrapped

function and the wrapped function returns with a value indicating that the

13



function is just wrapped. Thus, original system call unlink is called with
test1 file as argument, thus removing that file.

Test3:
User Program has the new system call vector: file ops vector
We have used fork to create a child process.
Parent Process calls open with test3 parent, O CREAT and 777 as ar-

guments.
Child Process calls fchown with 11,22,33(all random) as arguments

Expected Output:
Since open is just wrapped, the arguments are printed on the screen from

the wrapped function and original system call is called thus creating the file,
test3 parent

This test proves to be important as we are showing the functionality
of system call inheritance by using fork. This test proves that even the
child process’ task structure is updated with the parents task struct. Thus,
overridden fchown in the child is this called and just prints the arguments.

Test4:
User Program has the new system call vector: link vector.
We have used fork to create a child process.
Parent Process calls link with test4 oldpath and test4 newpath as argu-

ments
Child Process calls unlink with test3 parent (which was created in test3)

as argument.
After child process returns, parent process sleeps for sometime.
Then the parent process removes link vector from its task structure.

Expected Output: While the parent process is sleeping, we see that
link vector is still associated with it. If we try to remove the vector module,
if the reference counts had been handled properly, we should not be able
to remove the link vector module. We check this while the process is sleep.
After is returns from sleep, the process itself will remove the vector from its
task struct. Then after the program exits, you can remove the link vector
module successfully.

Test5:
Initially the user Program has the new system call vector: file ops vector.

Open system call is called with test5 file, O CREAT, 777 as arguments.
Then user program at run time removes this vector, sleeps for sometime and
adds the link vector Now unlink system call is made with test5 file as argu-
ments. Then user program removes link vector and then sleeps for sometime
and then calls open with test5 new file, O CREAT, 777 as arguments.

14



Expected Output:
test5 file is created because the wrapped open system from file ops vector

call is called. Then the process removes this vector and adds link vector to
the We added sleep in between so that we can ssh and show that the file is
being created while the process sleeps.Then, unlink from the link vector is
called. Then the file test5 file will be removed since the unlink system call
is just wrapped in link vector. We have put a sleep again to confirm this by
doing an ls and dmesg. Then link vector is removed from the process’ task
structure. Then because of the open system call creates the test5 new file
as expected and through the dmesg command we can confirm that there are
no overriding system call vectors.

B Code Changes

(a) Added a new void * field syscall inherit data in the struct task struct
in /usr/src/hw3− cse506g12/include/linux/sched.h

(b) Added an exteren declaration of do syscall inherit check function in
/usr/src/hw3− cse506g12/arch/x86/include/asm/signal.h

(c) Modified /usr/src/hw3− cse506g12/arch/x86/kernel/entry 32.S

(d) Definition of do syscall inherit check function defined in /usr/src/hw3−
cse506g12/syscall inherit/syscall inherit.c.

(e) All the four LKM’s (Loadble Kernel Modules) are present in /usr/src/hw3−
cse506g12/hw3/os proj.

C How To Run

(a) git clone ssh://user@scm.cs.stonybrook.edu:130/scm/cse506git-s12/hw3-
cse506g12

(b) cd hw3-cse506g12

(c) cp kernel.config .config

(d) make

(e) make modules install

(f) make install

15



(g) reboot

(h) cd /usr/src/hw3-cse506g12/hw3/os proj

(i) ./clean.sh

(j) ./make.sh

(k) cd test demos

(l) ./test1 file ops vector

(m) ./test2 link vector

(n) ./test3 file ops vector

(o) ./test4 link vector

(p) ./test5

16



Figure 1: Control Flow

17



Figure 2: Kernel stack

18


	Abstract
	Introduction
	Background
	Motivation
	Major Features
	Design
	Implementation
	Module for registering vector
	Adding system calls in vector
	Communicating via IOCTL
	Calling new system call handler
	Arguements Passing

	Limitations and Advantages
	Conclusion
	References
	 Test Cases
	Code Changes
	How To Run

