
Systemcall Inheritance

Ram, Maruthi and Hema
Stony Brook University

Abstract

In the Operating System world, system calls are a way
for a user process to request services from the kernel.
When a process makes a system call, a context switch
happens and the control shifts to the kernel. In Linux,
the system calls are implemented through a predefined
system call handler. There exists a default base system
call vector which holds the pointers to the different sys-
tem calls. Unlike Linux, BSD supports dynamic over-
loading of system call vectors. In this paper, we present
a way to support this feature in Linux 3.2. Using our
implementation, a process can set its own system call
vector which has its own system call implementations.
Our design incorporates new system call vectors through
loadable kernel modules and we provide a system call
interface for the user process to dynamically change its
system call vector. The complete details of our design
and implementation are covered in the next sections.

1 Introduction
In the world of operating systems, system calls are a way
for a user process to request a service from the kernel.
Most of the major user level operations such as opening
a file, reading from/writing to a file, forking a process re-
quire a user process to request these functionalities from
the kernel. System calls are a means to do this. A user
process makes a system call when it needs a service from
the kernel. At this point, a context switch happens and
the controls shifts to kernel. There are many variations
in the way the system calls are supported in various op-
erating systems. For instance, the BSD operating system
provides to its user processes, flexibility for dynamic
overriding of the system call vectors. In contrast to BSD,
the Linux operating system only supports a single prede-
fined system call vector syscall table which is statically
loaded during the kernel boot-up. Every system call in
Linux corresponds to a handler and the set of all these
handlers is stored in the system call vector indexed by
the system call number. When the user process makes
a system call by providing the system call number, the
handler at the index equal to this system call number in
the syscall table vector is invoked. Currently there is no
way in Linux, to override the default system call vector.

In this paper we set out to explore the ways to support
system call inheritance. Section [2] gives a brief back-
ground and motivation for our work. We present our de-

sign details and the various possibilities which we have
considered during our design in section [3]. In section
[4] we present our implementation details. Sections [5]
and [6] discuss the various use cases which can be sup-
ported by this feature and the related work in this area.
Finally, we conclude in section [7] followed by our fu-
ture work details in section [8].

2 Background
In Linux, the system calls are implemented through an
interrupt mechanism. There is a unique number associ-
ated with every system call. Every system call will have
its own predefined handler. The default system call vec-
tor syscall table holds these handlers which are indexed
by the system call number. When a user program issues
a system call, it in turn calls a library routine. The library
routine issues a trap to the Linux operating system by ex-
ecuting INT 0x80 assembly instruction. The system call
number and the arguments of the system call are passed
to the kernel by storing them in eax and other registers
(ebx, ecx, etc.) respectively. The kernel then executes
the system call by invoking the handler obtained from
the syscall table and returns the result to the user pro-
gram using a register.

3 Design
The main idea of our design is to support new system
call vectors as loadable kernel modules (LKM). Any
new vector which needs to be added should be imple-
mented as a LKM and inserted into the kernel. Since the
process taskstruct is unique for each process, we de-
cided to store the vector information in the taskstruct of
the process which can be accessed from anywhere in the
kernel using current pointer. New fields are added to the
process taskstruct to incorporate this feature.

We have defined a framework sysset syscallvector
which is central for our design. This framework holds
all information about a newly added vector, its reference
counts and it does the updating of the process taskstruct
when a process requests to set a custom system call vec-
tor. From here on, we refer to this framework as sysvec-
framework. Every vector newly inserted has to regis-
ter with this framework. This is required as the process
needs to know the list of currently supported custom vec-
tors in the system. The framework also handles the refer-
ence counts of the vectors. A reference count (rc) needs

to be maintained for a vector in order to avoid removal of
the vector when a process is using it. A vectors reference
count increases by one in two scenarios

1. when a process sets this vector in its process
taskstruct

2. when a child process inherits this vector from its
parent through fork()

A vectors reference count decreases by one in one of
the following two scenarios:

1. When a process exits, the rc of the vector is decre-
mented. Updating the reference count requires lock-
ing on the rc variable in order to have synchronization
among multiple processes.

2. When child wants to set its own vector, the refcount
of the vector it inherited is decremented.

We limit the number of times a process can set its vec-
tor to one. Any further attempts by the process to set its
vector will return an error. This is to avoid any malfunc-
tioning of the system calls. When a process is fork-ed(),
even though the child process inherits the vector set by
its parent, it can still set the vector of its choice through
the framework once. This information about whether
the process has already set the vector once is stored in
the process taskstruct structure.

As an added feature we are also supporting two types
of system calls, wrap-systemcall and override- system-
call. A wrap-systemcall acts like a wrapper to the de-
fault system call. It can be used to validate the inputs
before invoking the actual system call. An override-
systemcall completely overrides the default system call.
As a custom system call vector developer, one can de-
cide whether a system call in the new vector should be-
have like a wrap-systemcall or an override systemcall.
The vector will pass this information to the framework
during the registration which will be set in the process
taskstruct when the process sets this vector. It is up
to the vector developer to decide whether to support the
wrap/override option or not. Not setting this option im-
plies that all the system calls supported by this vector are
by default overriding system calls.

Following is the information per vector which is
maintained in our framework when a vector registers

1. Name of the system call vector
2. The reference count of the vector
3. Address to the system call vector
4. Address to the boolean array
As we have seen in the previous section, when a sys-

tem call is invoked the system call number is stored in
the eax register and the handler in the syscall table at
the index same as the eax value is invoked. Now to in-
corporate our design we modify the flow as follows

- before invoking the system call handler of the
syscall table, we will check to see if the vector pointer

in the process taskstruct is set and if not the default sys-
tem call is invoked

- if the vector pointer is set, then check if the new
handler for the invoked system call in this new vector is
set. If not, the default system call will be invoked

- if the new handler is set and
- the wrap-array in the taskstruct of the process is not

set , invoke the new handler
- the wrap-array is set and the type of system call

in the wrap-array is override-systemcall (0), invoke the
new handler

- the wrap-array is set and the type of system call in
the wrap-array is wrap-systemcall (1), then invoke the
new handler first and on its return, based on the return
value either call the default system call (if the return
value of the wrapper system call was a success - 0) or
return -1 to the process that invoked the system call.

4 Implementation
The implementation details of our design are explained
in this section. We worked on Linux 3.2.2 version.

4.1 Adding a new system call vector
The first step of our approach is to add a custom system
call vector which is implemented as a loadable module.
This module consists of the system call vector whose
size is the same as the default syscall table and which
holds the handlers for the newly overridden system calls.
The implementation of these handlers is also done inside
the module. The handler for the system calls which are
not being supported by this vector are set to NULL. The
vector that wants to support the wrap/override option can
do so by defining a new boolean array of size same as
the syscall table. A value of 0 in this array indicates an
overriding system call and 1 represents a wrapper sys-
tem call. Following is the information per module which
needs to be stored when the module is inserted:

1. Name of the system call vector (as listed to the user
process)

2. The reference count of the vector (indicates the
number of processes currently using this vector)

3. Address to the system call vector (pointer to the
new system call vector table)

4. Address to the boolean array (pointer to the
wrap/override array which can be NULL)

We have defined a new structure sysvectordata
which represents the vector data mentioned above.

struct syscallvectordata{
atomic t refcount;
char name[VECTORNAME LEN];
void *vecptr;
int *b wrap override;
struct list head mylist;
};

2

4.2 Registering with the framework
In section 3, we have discussed how to create a new sys-
tem call vector as a loadable module and that the infor-
mation about all such vectors must be stored. This mod-
ule provides an API addsyscallvector which should
be called by a vector to register itself with the frame-
work. Our framework maintains a list sysVectors to
hold the pointers to sysvectordata corresponding to
all the existing system call vectors. Whenever a new
system call vector module is inserted, a new pointer to
sysvectordata is created and filled with the vector data
and added to this list during registration.

4.3 Listing the system call vectors
The central interface for our approach is provided as
a new system call sysset syscallvector (int option,
void* data) which has been implemented as a load-
able module. From now on, we address this sys-
tem call as SETSYSVEC. The data pointer param-
eter acts as both in and out parameters depending
on the option value. OPTVECTOR COUNT and
OPT VECTOR LIST are options that must be used to-
gether. OPTVECTOR COUNT returns the number of
syscalls currently loaded. OPTVECTOR LIST returns
a (char **) of vector names. This (char **) buffer is al-
located by user program based on the number of syscall
vectors loaded. We copy the vector names into the user
buffer by copyto user().

4.4 Setting a system call vector
Any process which needs to override the syscall table
has to first set the vector in its taskstruct There are many
ways this can be supported namely,

1. Using ioctl - For each loadable module which is
adding new system call vector(s), we can define an ioctl
such that the handler for this ioctl is implemented in the
corresponding module. Any process which wants to set
a new system call vector can call the corresponding ioctl
to do so. But the drawback with this approach is that we
will end up defining a new ioctl for each new loadable
module which is an overhead.

2. Defining a new system call - We can define a new
system call which when invoked by the process with the
vector name as input, will set the corresponding vector
for the process.

3. Through exec() system call - A new wrapper call
can be added for the exec() system call which in addition
to the actual exec() system call arguments also takes
one more argument which is the name of the system call
vector.

For our design we have considered adding a new
system call to set the custom system call vector. The
SET SYSVEC discussed in the previous section also
handles the functionality of setting a new system call

vector. The process invokes this system call with the
option value as OPTVECTOR LOAD and data pointer
set to the name of the vector. Depending on the vec-
tor name, its corresponding vector is obtained from the
sysVectors list and set in the process task structure.

4.5 Modifying the Process task structure
We have updated the taskstruct structure to hold these
additional fields: 1. isvector set boolean which indi-
cates whether the process has already set its vector by
invoking the SETSYSVEC 2. sysvectorptr - address
of the system call vector which the process wants to set
3. wrapoverride - the address of the boolean array indi-
cating the wrap or override option

We limit the number of times a process can set its
custom vector by calling the SETSYSVEC system call
to one. To incorporate this, we have added the boolean
variable isvector set in the task structure which if set to
0 indicates that the process has not set the custom sys-
tem call vector and 1 indicates that the process has set its
vector. When isvector set is 1, the process is blocked
from further setting its system call vector. For a fork-ed(
) process this value is by default set to 0.

4.6 Invoking the system call
When the process invokes a system call, the flow will
reach the entry32.S file where certain modifications
have been done to incorporate our feature. As men-
tioned before, the system call number is stored in the
eax register and the parameters of the system call are
stored in the remaining registers. We have added sup-
port in asm-offsets.c to generate the new MACROS
TI task, TSsysvectorptr and TSwrap override, which
represent the offsets of the taskstruct in the threadinfo
structure, sysvectorptr pointer in the taskstruct and
wrap override pointer in the taskstruct respectively. Us-
ing these macros, we get the taskstruct of the current
running process and its corresponding sysvectorptr and
the wrapoverride pointers. And we do the required
checking as explained in the design section.

4.7 Reference Counts
We have reference counts maintained for the vector
which indicates the number of processes which are cur-
rently using it. The rc of a vector is incremented when
a process sets it or when a child is forked from a parent
which has set this vector. The rc is decremented when
the process using this vector exists. Removal of a vector
returns an error if the rc of a vector is greater than 0.

4.8 Locking
To achieve synchronization among processes we need to
incorporate locking in to our framework. The reference
count variable can be modified by multiple processes.

3

Hence this variable has been defined as of type atomict
which handles the locking of reference counts internally.
The list of vectors maintained in the SETSYSVEC
framework can be accessed by multiple processes at the
same time. Hence there needs to be some kind of lock-
ing mechanism on this list. We have defined a read/write
semaphore for this list. Any process which needs to ac-
cess this list needs to grab this lock. Multiple processes
can read from this list concurrently by grabbing the read
lock but to update this list a process has to grab the write
lock.

4.9 Module validation
We restrict the system call vector developer from over-
riding fork() and exit() system calls as it can break
the existing functionality and also disturb the reference
count values of the vectors. Hence any loadable module
which tries to support a new system call vector that is
overriding fork or exit will get an error during insmod.

5 Usage
Below are the steps to be followed to test our implemen-
tation. The paths mentioned here are relative to the home
folder.

1. Run make in hw3 folder which will build all the
LKMs.

2. Firstly insert the sysvector module (insmod)
which represents the system call added to handle the
vector modules.

3. Insert the desired system call vector. Ex: vec-
tor logging.ko

4. Run make in hw3/usercode folder which will build
all the user files.

5. The user files expect the name of the system call
as a command line parameter. For instance, to run the
user file logging.c which needs to use the vector vec-
tor logging, run the following command: $./logging
vector logging

6. If no vector name is provided, the default
syscall table will be used.

6 Use Cases
The system call inheritance approach implemented in
this paper can be used in two broad scenarios

6.1 Completely overriding the default sys-
tem calls

As discussed in the previous sections, the vector devel-
oper can set an option for a system call to completely
override the existing default system calls. This feature
can be widely used in the following applications:

1. Restricting access to some system calls - There
are certain cases, when we need some application not to

modify any of the files. One such example can be an ap-
plication which spawns multiple children and execs new
programs. If we have to block these spawned processes
from creating/ modifying/deleting files, we can define
a new system call vector which overrides the system
calls creat/write/unlink which creates/modifies/deletes
files respectively. In these overridden system calls we
can just return the error messages. This way we restrict
the application from doing something undesirable.

2. Customizing the default system call behavior -
Some users do not want the default behavior of system
calls. They want to implement their own functionality.
This can be achieved by defining a new system call vec-
tor with customized system calls and setting this vector.

6.2 Wrapping the default system calls
Some applications might want to validate the privilege
levels/parameters before invoking any system call. This
can be done by defining a wrapper system call for the
actual system call which needs to be called. Some such
applications are listed below.

1. Logging of system calls - In some cases, the user
might want to know what all system calls a particular
application is using. In this case, they can define a new
system call vector, with the system call handler set to
their logging functions which will log the messages that
a particular system call has been invoked and return suc-
cess. The wrapping facility will take care of invoking
the default system call after the user provided logging
function has been executed. So if a user wants to know
what all system calls a particular application is invoking,
he can write a new program which will set this new sys-
tem vector and exec the target application for which he
wants to find out what all system calls it is using.

2. Access denial to system calls based on user priv-
ileges - There might be scenarios where access rights
to certain operations like creation/deletion/updation of
files are to be provided to root user alone. We can
achieve this functionality with our approach. We can
define a new vector by providing wrapping system calls
for creat/write/unlink system calls which can verify the
user who has invoked these system calls and return an
error if the user does not have the required privilege lev-
els. If the user does meet have the privilege levels, the
underlying default system call can be invoked.

3. Denial of some system calls based on parameter
validation - There are cases when create/delete/ update
operations are to be restricted on some files/directories,
for instance on the files in /root directory. The user
can define a new vector providing wrapping system
calls for the creat/write/unlink system calls which cre-
ate/modify/delete files respectively. These wrapped sys-
tem calls can check the parameters to see if the file
passed is under the /root directory and if not, it can re-

4

turn error. In this way we can block modification access
to certain files.

7 Related Work
A system call is the way in which the kernel services a
programs requests. Each flavor of linux would typically
want to have its own wrapping/overiding mechanism to
support custom operations. However Linux does not al-
low modules to override system calls, mainly keeping
security in view. Most of the overriding in Linux is done
using System call interception, but replacing the vector
itself is not encouraged. BSD allows overriding by in-
heriting the system call dispatch vector per process. A
policy can make a new process use an entirely new set
of system call vectors. The system call vector contains
a list of sysent[] entries whose addresses reside in the
kernel module. Each sysent entry corresponds to a cus-
tom system call vector and contains the number of argu-
ments, implementing function, audit events and general
flags associated with the system call. When a system
call is invoked, the trap code dereferences the system
call function pointer off the process task structure.

8 Conclusions
In this paper, we provide a framework to override the
default system call vector syscall table in Linux ker-
nel 3.2.2. This feature provides the user process to dy-
namically choose a new system call vector thus mak-
ing it feasible to have functionalities different from the
ones present in the default system calls. We provided
this framework in the form of a system call which the
user process can invoke to set its own vector. Internally,
our approach also supports both wrapped and overrid-
den system calls which can be controlled by the vector
developer. As discussed in the previous sections, vari-
ous security applications can use this feature to impose
access control rules on the users.

9 Future Work
There are certain aspects like the permission checks for
setting the system call vector and customized error val-
ues for wrapped system calls and which we have not in-
cluded in our current implementation. These features
can be incorporated in our model in the future to im-
prove the efficiency of our approach. The details of these
features are explained below.

9.1 Access Control for System Call Vectors
Our current implementation does not perform any per-
mission check on the user who is setting the system call
vectors. Any user program can set any system call vec-
tor. We can implement access control for the system
call vectors, to restrict certain user programs from set-
ting certain vectors. The existing implementation can

be modified to maintain a group id/user id list for each
system call vector, indicating which groups/users can ac-
cess this system call vector. This can be provided while
inserting the system call vector module. So when a user
process tries to set a particular vector, its user-id can be
checked in the list and if the id does not exist in the list,
we can return an access denied error message.

9.2 Customized error for wrapped system
calls

In the current implementation, even though the wrapped
system calls return an appropriate error number, we are
returning a standard error ”-1” to the user program. We
can support this feature by making changes to the assem-
bly code to store the state of the program before calling
the wrapped system call. Once done with the wrapped
system call, if it returns a value other than 0, we change
the stored stack state to contain the returned value, by
popping eax from the stack state and pushing the return
value in place of eax. Once the return value is pushed
on to the stack, we can restore the stack state and go
to the end section of the system call. For this we need
to write a modified SAVEALL and RESTOREREGS
macros. The current SAVEALL macro pushes eax reg-
ister first which makes it difficult to modify eax to con-
tain the error value from wrapped system. To overcome
this problem, new custom macros MYSAVE ALL and
MY RESTOREALL need to be defined which will
push the eax value in the end and pop it in the beginning
respectively. Thus the MYSAVE ALL will be push-
ing the error number present in eax on to the top of
the stack and when we get an error value from wrapped
system call, we pop the top value from stack and push
the error number on to the stack. When we call our
MY RESTOREREGS, it first pops the eax value, which
contains the error message followed by the other register
values. For this to work, we need to change the prototype
of our new custom system calls to contain the system
call number as the first argument because the top most
value on the stack is the eax, which contains nothing but
the system call number. We have implemented this in
our current project, but it is not fully tested. Hence, the
newly modified entry32.S is not checked-in. Our future
work would be to test this implementation.

10 Bibliography
1. Understanding the Linux Kernel. Authors: Daniel P.
Bovet, Marco Cesati

2. An Advanced 4.3BSD Interprocess Communica-
tion Tutorial. Authors: Samuel J. Lefer, Robert S. Fabry
William N. Joy, Phil Lapsley

3. Design and Implementation of the 4.4 BSD Oper-
ating System. Authors: Marshall Kirk McKusick, Keith
Bostic, Michael J. Karels, John S. Quarterman.

5

4. Intrusion Detection using Sequences of System
Calls. Authors: Steven A. Hofmeyr, Stephanie Forrest,
Anil Somayaji, Dept. of Computer Science, University
of New Mexico

5. Fine-Grained User-Space Security Through Vir-
tualization. Author: Mathias Payer, Thomas R. Gross,
ETH Zurich, Switzerland

6

