
Walking Onions: Scaling Anonymity Networks while Protecting Users

Chelsea Komlo
University of Waterloo

Nick Mathewson
The Tor Project

Ian Goldberg
University of Waterloo

Abstract
Scaling anonymity networks offers unique security chal-
lenges, as attackers can exploit differing views of the net-
work’s topology to perform epistemic and route capture at-
tacks. Anonymity networks in practice, such as Tor, have
opted for security over scalability by requiring participants
to share a globally consistent view of all relays to prevent
these kinds of attacks. Such an approach requires each user
to maintain up-to-date information about every relay, causing
the total amount of data each user must download every epoch
to scale linearly with the number of relays. As the number
of clients increases, more relays must be added to provide
bandwidth, further exacerbating the total load on the network.

In this work, we present Walking Onions, a set of proto-
cols improving scalability for anonymity networks. Walking
Onions enables constant-size scaling of the information each
user must download in every epoch, even as the number of
relays in the network grows. Furthermore, we show how relax-
ing the clients’ bandwidth growth from constant to logarith-
mic can enable an outsized improvement to relays’ bandwidth
costs. Notably, Walking Onions offers the same security prop-
erties as current designs that require a globally consistent
network view. We present two protocol variants. The first re-
quires minimal changes from current onion-routing systems.
The second presents a more significant design change, thereby
reducing the latency required to establish a path through the
network while providing better forward secrecy than previ-
ous such constructions. We implement and evaluate Walking
Onions in a simulated onion-routing anonymity network mod-
elled after Tor, and validate that Walking Onions indeed offers
significant scalability improvements for networks at or above
the size of the current Tor network.

1 Introduction

When participants in an anonymity network hold different
views of the network’s membership and topology, an adver-
sary can exploit these differences in knowledge to distin-
guish clients’ behaviours [12] or intercept users’ traffic [45].

Anonymity networks in practice [13] have prevented these
attacks by requiring all participants to share a globally consis-
tent view of the entire state of the network, and giving clients
complete control over selecting relays for their paths. While
this approach prevents the described attacks, requiring a glob-
ally consistent view results in quadratic bandwidth growth as
the number of clients increases [26], because the number of
relays must also increase to provide more capacity, and all
parties must download information about all relays. While
today’s Tor network requires only approximately half a per-
cent of its total bandwidth to serve network state [39, 41],
increasing the number of clients and relays by one order of
magnitude would result in the consumption of roughly five
percent of the network’s (ten times larger) total bandwidth
simply to distribute network state; an increase by two or-
ders of magnitudes results in the consumption of half of the
network’s (hundred times larger) total bandwidth. Clearly, re-
quiring a globally consistent network view for all participants
is an obstacle to anonymity networks reaching the scale of
modern-day browsers [37].

Moreover, some use cases benefit immediately from im-
proved scalability. For anonymity networks requiring a glob-
ally consistent view, a client joining the network on initial
startup must download the complete network state, which can
be prohibitive for mobile users or those in areas with poor
connectivity. Further, “on-demand” clients—applications that
are used only occasionally—still incur bandwidth overhead,
as the client must either continue to fetch network state when
idle, or bootstrap from scratch after becoming active.

To safely address these scalability issues, we present Walk-
ing Onions,1 a set of novel protocols and algorithms to reduce
the amount of data clients must maintain in onion-routing
anonymity networks from linear to constant relative to the
number of relays. Thus, as the number of clients increases, the
load to the network to distribute relay information to clients
increases linearly with the number of new relays, as opposed

1The Walking Onion, or Allium × proliferum, is a charming edible plant
that spreads by growing a cluster of new bulbs on a stalk, until the onion
becomes so top-heavy that the bulbs flop over and take root somewhere new.

1



to quadratically. Notably, unlike prior designs with similar
scalability goals [26, 29], our protocols maintain the same
security properties as designs that require clients to maintain
up-to-date information about every relay in the network.

Our design includes a novel path-selection and circuit ex-
tension protocol, wherein clients obliviously choose random
paths through the network without prior knowledge about the
network’s membership or topology, and yet can verify the cor-
rectness of their paths after they are constructed. We present
two variants of our protocol. One variant does not change the
existing security model for Tor, and makes minimal changes
to a generic onion-routed design. The second protocol variant
improves upon state-of-the-art single-pass onion-routing pro-
tocols by relaxing the forward secrecy for path selection from
immediate to windowed, but preserves forward secrecy for
content. In turn, this design reduces client latency by building
upon a technique from Sphinx [11] to create circuits with only
a single round trip between the client and all relays on the
path. This improvement reduces the latency of circuit creation
from quadratic to linear with respect to path length.

We focus on the applicability of Walking Onions to
Tor [14], but note that Walking Onions can be used by other
anonymity networks with similar threat models and scalability
concerns, such as HORNET [10].

Contributions. We present a novel set of efficient path-
selection and circuit-extension protocols for anonymity net-
works using onion routing. Our work builds upon a prior
Tor proposal [24] written by a co-author of this paper. Our
contributions include:
- Two novel protocols that require clients of an anonymity

network to maintain only a constant-sized amount of net-
work information, while remaining secure against route
capture and epistemic attacks (described in Section 2).

- Primitives to efficiently and verifiably transmit relay infor-
mation, and a comparison of authentication mechanisms.

- Techniques and protocols to enable clients to constrain
relay selection to a subset of relays fulfilling some attribute,
while not performing this filtering locally.

- Implementation and evaluation of these protocols’ band-
width and CPU consumption in a simulated anonymity
network modeled after Tor.
Organization. We present background material in Sec-

tion 2. We give an overview of Walking Onions in Section 3,
and describe how it distributes network information in Sec-
tion 4. We present novel path selection and circuit extension
protocols in Section 5, and techniques to enforce path require-
ments in Section 6. We evaluate the performance of these
protocols in Section 7, and conclude in Section 8.

2 Background

Throughout this work, we use Tor as a case study work to
demonstrate the applicability of our protocols; however, we

present an alternative application of Walking Onions to HOR-
NET [10] in Appendix A.

Existing Tor Protocol. Tor is a low-latency anonymity net-
work with 2.5 to 11 million unique users [22, 42] and roughly
6,500 volunteer-run relays [40]. Tor’s protocol requires clients
to keep up-to-date information about every relay in the net-
work. This information is provided by directory authorities,
a trusted set of servers administered by core members of the
Tor community. Every epoch (in Tor, one hour), relays upload
information about themselves to the authorities, who then
vote on the relays’ statuses. From these votes, the authori-
ties compute a multisigned consensus directory document
representing their conclusions. By checking the signatures
and timestamp on the consensus document, clients and relays
ensure the validity and timeliness of the latest consensus.

Once a client has obtained the latest consensus, the client se-
lects a list of relays (typically three) to use for a multi-layered
encrypted communication tunnel, called a circuit, to route
traffic through the network. Tor clients do not select relays
uniformly at random; instead, for load balancing, they choose
each relay with probability related its measured bandwidth
and intended position on the path.

Tor uses a telescoping technique [14] in which circuits
are built one hop at a time. The client uses each partially
completed circuit to perform a handshake with the next relay
in the circuit, until the circuit is complete. Building circuits via
telescoping allows forward secrecy against key compromise,
as the client negotiates a shared session key with each hop,
but also increases latency, as constructing an n-hop circuit
needs n round trips.

Path-based Attacks Against Anonymity Networks.
Tor’s consensus mechanism defends against certain well-
known attacks based on how anonymity network information
is distributed and used for path selection. Such attacks include
epistemic attacks, in which an adversary deduces information
about a client from information leaked by the client’s choice
of relays [12], and route capture attacks, in which a client’s
chosen path is replaced or influenced by a malicious interme-
diary [45]. These attacks can pass undetected if clients’ views
of the network are not consistent and authenticated.

Designs for Managing Network Information. In a sur-
vey by Shirazi et al. [36], anonymity networks fall into two
categories based on how paths are built. Paths can be either
source-routed, in which the client holds complete control over
path selection, or hop-by-hop, in which intermediate nodes
are allowed to influence the next relay selected. However,
the latter approach can allow hostile intermediate nodes to
influence the client’s path to their advantage.

Crowds [33] relies on a peer-to-peer protocol. Paths
through the network are determined using a “coin-flipping”
random-walk technique, in which each node forwards requests
either to another intermediate node, or directly to the intended
recipient, depending on a weighted coin flip. Crowds is triv-
ially vulnerable to route capture attacks because of its hop-by-

2



hop routing: a single hostile node can choose a hostile node
(or no node at all!) as its successor, thereby ensuring that the
rest of the path will be hostile.

ShadowWalker [29] uses a peer-to-peer random-walk pro-
tocol and a distributed hash table (DHT) to distribute relay
information. To extend a circuit, the client sends a randomly
selected index to an intermediate node, which the node uses
to perform a lookup in its finger table of known neighbours.
ShadowWalker protects against routing attacks by requiring
relays to commit to routes by distributing finger tables to de-
terministically chosen “shadow nodes”, which the client then
uses to verify the response for their selected index. In spite of
these techniques, ShadowWalker is still vulnerable to route
capture attacks [35], and the probability of epistemic attacks
grows relative to the length of the path.

The Invisible Internet Project (I2P) is a peer-to-peer, fully
decentralized anonymous overlay network [46]. Like Tor, I2P
implements source-based routing. However, I2P does not rely
on central authorities to distribute network directory informa-
tion. Untrusted “netfill” routers maintain a DHT representing
all network information, and “gossip” updates to peers. How-
ever, partitioning attacks are possible, as a participant cannot
verify the information served by any netfill router [19].

PIR-Tor [30] allows clients to download information about
a small subset of relays from a set of authorities using private
information retrieval (PIR), thereby preventing observation
of which relays a client requests from the authorities (or any
other intermediary). While PIR-Tor maintains security within
Tor’s existing threat model, the designs either have undesir-
able performance or complexity tradeoffs when considering
their use in anonymity networks at scale. Specifically, Compu-
tational PIR is not scalable due to the high computational cost
to the servers that must perform these operations for every
client multiple times per epoch. Information-Theoretic PIR
requires multiple non-colluding parties and thus changes the
structure of existing protocols, adding additional complex-
ity. ConsenSGX [34] improves upon the resource usage of
PIR-based relay selection by using trusted execution environ-
ments like Intel’s SGX. However, adoption of ConsenSGX
(or any design requiring trusted execution environments) un-
desirably changes Tor’s threat model to include trust in the
hardware, and so risks compromise due to vulnerabilities in
trusted environments, as seen in the past [6].

Designs For Single-Pass Circuit Creation. Reducing the
number of round trips needed to create circuits in anonymity
networks has been addressed using a variety of approaches.
Below we highlight a few that have been proposed for Tor;
however, these designs make undesirable tradeoffs in security
and efficiency, which we also discuss.

Øverlier and Syverson [31] propose a scheme in which the
user has access to an authentic copy of every relay’s public
Diffie-Hellman key from the consensus. Each circuit’s session
keys are derived from a relay’s static key and an ephemeral
key provided by the client. However, this approach compro-

mises the forward secrecy of data exchanged over the circuit,
due to the use of the relays’ static keys.

Kate et al. [21] and Catalano et al. [8, 9] present variants
of single-pass schemes using identity-based encryption. The
drawbacks of these schemes include the requirement of a
central authority for key distribution and the lack of forward
secrecy for client communication.

The above designs also do not defend against linking public
key material exposed in transit. Sphinx [11] presents a prov-
ably secure packet format for anonymity networks, providing
cryptographic unlinkability between incoming and outgoing
packets. The session key for each node on the circuit is com-
puted from the server’s private key and a blinded element
initally provided by the client and re-blinded at each hop, thus
ensuring unlinkability of public key material between hops.
Kate and Goldberg [20] assess the security and efficiency of
Tor-preDH, pairing-based onion routing, and Certificateless
Onion Routing using Sphinx as the underlying packet format.
Unfortunately, undesired tradeoffs remain with each construc-
tion, such as the loss of forward secrecy for session keys or
the requirement of a complex central PKI.

Cryptographic Sortition. Cryptographic sortition—
verifiably randomly selecting participants from a global
set—will be used in our work to determine the relays selected
for a path through an anonymity network. Sortition typically
uses Verifiable Random Functions (VRFs) [28]. VRFs
accept an input string and a private key, and produce both a
deterministic but unpredictable (to those without the private
key) output along with a proof of the correctness of the output.
This proof can be verified using the corresponding public
key. Sortition has a number of applications in distributed
networks; for example, the Algorand Byzantine agreement
protocol uses sortition to verifiably select nodes at random to
participate in a consensus protocol [16].

3 Walking Onions Overview

To address the scalability of Tor and similar anonymity net-
works, we present Walking Onions, a design that allows
clients to obliviously select relays for paths through the net-
work and establish a secure circuit with these relays. As such,
the design of Walking Onions ensures that as new clients
and relays join the network, the resulting total load over
all network relays scales roughly linearly,2 as opposed to
Tor’s quadratically. Further, the design of Walking Onions
ensures that clients can begin building circuits after down-
loading only a constant amount of network data, as opposed
to the entire network directory document. Our design protects
against route-capture and epistemic attacks, and does not re-
quire clients to maintain complete network state information.

2There is a tiny quadratic term, because all relays (not clients) must still
learn about all relays in Walking Onions. The coefficient of the quadratic term
in our experiments is 2200× smaller than in today’s Tor, however: see 7.1.

3



3.1 Threat Model

We assume the threat model of the Tor network [14]; see that
work for more details. As an overview, Tor’s threat model
assumes independently operated relays of which a subset can
be malicious but the majority are not. A malicious relay is
not bound to operate under any particular protocol, and can
behave arbitrarily. Furthermore, the threat model includes
adversaries that can observe only a subset of network traffic.
Tor’s threat model does not include end-to-end attacks where
the adversary can observe information at both edges of the
network where specific messages enter and leave, such as
timing or volume of packets.

This threat model assumes the anonymity network has a
root of trust to produce authenticated network directory doc-
uments. We refer to this trust anchor as the authority. The
instantiation of this authority can vary, so long as its out-
put is verifiable and trusted by all participants. For example,
the authority may be distributed among several voters who
participate jointly. In Tor, the authority is a set of directory au-
thorities, of which a threshold number are assumed to be hon-
est [38]. Walking Onions can also support alternative consen-
sus mechanisms for anonymity networks other than Tor, such
as verifiably selecting at random a subset of nodes to generate
the network directory document. If the anonymity network is
completely decentralized (i.e., no entity holds complete infor-
mation about the network), another possible authentication
mechanism is to require each relay to deterministically select
t other relays to validate its information for the current epoch.

3.2 Goals

Scalability Goals. As additional clients join the network, a
proportional number of relays is typically needed to provide
sufficient bandwidth. For scalability, we require that even as
the number of relays grows, the cost to clients in bandwidth
and memory remains constant. We later relax this requirement
to allow for logarithmic growth for clients, in order to improve
bandwidth for relays (see Section 7). Further, we require that
the latency (in terms of round trips) experienced by a client to
establish a new circuit is no worse—and ideally better—than
current onion-routing protocols.

Security Goals. We require our designs to fulfill the fol-
lowing security properties:

Correctness. The client must be able to establish a valid cir-
cuit through the network; a valid circuit entails that each relay
is selected corresponding to the client’s path requirements,
and corresponds to a valid entry in the current network direc-
tory document produced by the authority for the anonymity
network. Furthermore, clients must be able to establish a se-
cure shared session key with each relay on the circuit.

Security. The client must be able to verify that the selection
of relays on its path has not been influenced by an interme-
diary in such a way as to result in epistemic or route capture

attacks. Specifically, the client must be able to ensure that
the relays selected for the client’s path were selected at ran-
dom from a given distribution, and that the distribution itself
has not been maliciously modified or influenced. Finally, we
require that a malicious relay acting in isolation cannot com-
promise a client’s security or ability to access the network.
Privacy. A user’s participation in an anonymity network

remains private so long as a network adversary with a limited
view of the network [14] cannot gain useful information about
the user from observing traffic. Furthermore, an adversary
monitoring incoming and outgoing traffic for a specific relay
should not be able to perform a linking attack by comparing
exposed packet contents.

3.3 Key Design Insights
Walking Onions uses the following key design insights to
scale anonymity networks:

Oblivious path selection. In Walking Onions, clients do
not maintain a list of relays. Instead, to build a path through
the network, a uniform random integer i from a fixed range is
selected either by the client directly, or at least in a manner
provably uninfluenceable by any intermediary. This i serves
as an index into a probability distribution generated by the
authority over the relays with properties required for that path.
After later learning the relay corresponding to i, the client will
verify that it was in fact chosen correctly. So long as the client
can reliably validate that the resulting relay corresponds to i,
the client does not need any relay information beforehand.

Post-hoc identity verification. As a second insight, we
note that to extend a circuit to a given relay, some crypto-
graphic handshakes—such as one-way authenticated hand-
shakes based on Diffie-Hellman [17]—can be easily modified
to not require knowledge of the other party’s public key up
front. Notably, a client can initialize a cryptographic hand-
shake with a relay by sending only their own ephemeral public
key, and verifying the relay’s public key material after the
relay has responded. Consequently, a client can extend a cir-
cuit to a specific relay without any identity or cryptographic
information for that relay beforehand.

We next develop these insights into a set of protocols.

4 Network Information in Walking Onions

We begin by outlining notation and terminology, and then we
discuss how network directory documents are encoded and
distributed in Walking Onions.

4.1 Notation and Terminology
Let α be an integer that determines the precision with which
we can represent node selection probabilities. Relays will be
selected via random integers i with 0≤ i < α. We recommend
α = 232.

4



A network directory document is an authenticated docu-
ment made up of information representing all relays, such
as their cryptographic identity keys and IP addresses. These
directories are regenerated once every epoch.

A network parameters document is a constant-sized authen-
ticated document that includes information such as supported
protocol versions and network parameters. Such a document
is used in practice, for example, to coordinate all clients to
switch to a new protocol at the same time, to avoid fragment-
ing the clients’ anonymity set.

A path through the network is an ordered list of relays. A
circuit represents the cryptographic instantiation of the path,
in which the client shares a different set of negotiated session
keys with each relay in the path.

4.2 Encoding Network Directory Documents
In the Walking Onions design, once every epoch, the authority
generates an authenticated network directory document re-
flecting the current state of all relays. We call the authenticated
network directory document an Efficient Network Directory
with Individually Verifiable Entries, or ENDIVE. We call each
entry in the ENDIVE a Separable Network Index Proof, or
SNIP. Each SNIP corresponds to a single relay; consequently,
the ENDIVE comprises the complete set of all SNIPs.

ENDIVEs. Importantly, in Walking Onions, only relays
need to download ENDIVEs. Relays are required to fetch the
entire ENDIVE at bootstrap; afterwards, relays fetch only the
changes to the ENDIVE once per epoch. Clients download a
constant-size network parameters document once per epoch
(if the anonymity network requires this), but do not require a
complete list of relays to build circuits.

Each ENDIVE contains the set of all SNIPs for the epoch
and an authentication tag over this set. We describe options
to generate this authentication tag in Section 4.3. We present
a walked-through example of an ENDIVE in Appendix B.

SNIPs. In anonymity networks, a relay entry is the infor-
mation about a single relay distributed in a network directory
document. A relay entry includes routing information about
the relay such as its public keys, IP address(es), and supported
features or versions. As described in Section 2, Tor distributes
this information in a network directory document, which in-
cludes the set of relay entries that are valid for the current
epoch, and a signature over the entire document.

SNIPs differ from relay entries by including three addi-
tional fields, which we now describe.

First, each SNIP includes an index range: a range of integer
values whose size is proportional to the desired probability
of selecting this relay. In Tor, for example, the size of each
relay’s range would be proportional to its bandwidth. When
generating the ENDIVE for each epoch, the authority com-
putes and assigns index ranges for each SNIP in the ENDIVE.
The index ranges must be chosen so that every possible index
(between 0 and α−1 inclusive) corresponds to exactly one

relay. As we describe further in Section 5, these index ranges
enable clients to indicate which relay to extend their circuit
to without maintaining the ENDIVE locally.

Second, each SNIP includes its own authentication tag
generated by the authority over only the content in the SNIP
(we describe several options to perform this authentication in
Section 4.3).

Third, each SNIP includes two timestamps indicating when
the SNIP was created and when the SNIP expires.

Because SNIPs are individually authenticated, clients can
validate them without downloading the entire ENDIVE. We
describe how clients build upon this capability to securely
perform path selection and circuit extension in Section 5.

Weighted Relay Selection. The index selection mecha-
nism described above, where each relay is assigned to a por-
tion of the index proportional to its selection probability, al-
lows the authority to specify any desired probability distribu-
tion over relays. By giving some relays a larger range of index
values than others, the authority can cause those relays to be
selected more often than others, as is typically desired. Later
in Section 6 we will show how to extend this mechanism to
encode multiple different probability distributions, so that, for
example, the last relay in a path can be chosen from a different
distribution than a middle relay.

Alternative topologies. For simplicity, in this work we
assume a full clique network topology, in which every relay
can connect to any other relay. However, Walking Onions
is applicable to alternative topologies by issuing multiple
ENDIVEs, in which a pre-determined partitioning scheme
could assign relays to a specific ENDIVE. Such an approach
could be used to integrate Walking Onions into mix networks
like Katzenpost [1], which relies upon a stratified topology,
in which relays are partitioned into distinct layers and client
paths contain one relay per layer.

4.3 Authenticating ENDIVEs and SNIPs
In order for clients to verify SNIPs without downloading
the full ENDIVE, each SNIP includes an authentication tag
produced by the authority over the information only within the
SNIP. We now survey several authentication mechanisms, and
evaluate the performance of the more promising approaches
in Section 7.

One signature per voter. When the authority for an
anonymity network comprises multiple voters, one simple
solution is to include one signature from each voter in each
SNIP. In this case, the number of signatures in the ENDIVE
is equal to NV NR, where NV represents the number of signing
voters and NR represents the number of relays.

Aggregate/Threshold Signatures. Joint signatures, in
which a single signature represents n signers, offer an attrac-
tive option for authenticating ENDIVEs and SNIPs in Walk-
ing Onions, as multiple signing voters can coordinate to issue
a single authentication tag. Aggregate signatures [2,3,25] pro-

5



vide an n-out-of-n scheme in which all voters must participate
to produce a joint signature, while threshold signatures [4]
provide a t-out-of-n trust model, requiring only a threshold
number of voters to produce the signature.

In comparison to other signing mechanisms, threshold sig-
natures offer a compelling alternative when the authority for
an anonymity network comprises multiple voters, yet a subset
of these voters may be offline at any time.

Merkle Trees. Another authentication approach is to use
Merkle tree proofs [27] to ensure a specific SNIP is within the
ENDIVE signed by the authority for the network. A client can
download the Merkle root for the most-recent ENDIVE in the
(constant-sized) network parameters document, which itself
is authenticated by the authority. During circuit construction,
the client receives a Merkle tree proof along with the SNIP to
prove inclusion of the SNIP in the ENDIVE, demonstrating a
path from the SNIP to the Merkle root. Note that these proofs
can be constructed by relays locally and consequently do not
require distribution in the ENDIVE itself.

Merkle trees are particularly attractive for bandwidth sav-
ings because of the small amount of new information required
for relays to maintain an up-to-date ENDIVE. With the other
mechanisms, a relay needs to download an new signature
for each SNIP every epoch, whether the SNIP’s information
has changed or not: the timestamp will have changed and
the signatures thus cannot be reused. But with a Merkle tree,
the relay can download only the bodies of SNIPs that have
changed, plus one unpredictable signature for the tree’s root.
(The non-leaf, non-root nodes of the Merkle tree can be re-
computed, and do not need to be downloaded.)

The savings in relay downloads with Merkle trees, however,
is offset by the increased size in SNIPs: they now must contain
dlgNRe digests, where NR is the total number of relays in the
ENDIVE. We examine this tradeoff more in Section 7.1.

Authenticating ENDIVEs. Because ENDIVEs are simply
the set of SNIPs valid for the current epoch, a relay can vali-
date an ENDIVE by verifying the authentication tag for each
SNIP in the ENDIVE, and checking no SNIPs are missing by
looking for gaps across the SNIPs’ index ranges. However,
a more efficient validation mechanism is to include an addi-
tional authentication tag over the ENDIVE as a whole, for
relays to check after downloading the most-recent ENDIVE.
Conventional mechanisms can be used for this purpose, such
as the one-per-voter signing strategy, as the overhead for sig-
natures is negligible in comparison to the document size.

5 Walking Onions Path Selection and Circuit
Extension

We now present two separate protocols allowing clients to
obliviously yet verifiably select relays and extend circuits
through anonymity networks. We call the first Telescoping
Walking Onions, and the second Single-Pass Walking Onions.

We introduce both protocols and discuss their tradeoffs, after
a few preliminaries.

5.1 Preliminaries

Let g be a generator of a group of prime order in which the
Decisional Diffie-Hellman problem is hard.

Circuit bootstrap. Walking Onions presents efficient path
selection and circuit extension protocols, but assumes the
client holds trustworthy information about the first hop. We
discuss several mechanisms to establish the first hop in a
circuit in Section 5.6.

Authenticated key exchange. We assume the existence
of a one-way-authenticated two-party key exchange with a
post-specified peer, in which the initiator authenticates the
responder after both supply ephemeral keys. We follow a sim-
ilar approach to Canetti and Krawczyk [7] by assuming the
idealized functionality of such a protocol with similar assump-
tions. As part of this idealized authenticated key exchange,
we assume the following functions:

KeyGenAuth(1λ) → (x,gx): Generates an ephemeral pri-
vate/public keypair with security parameter λ.

ComputeSecretAndAuth(gx,y,b) → (S,A): Computes the
shared secret S and a value A used to authenticate
the relay using the relay’s long-lived private key b
and ephemeral private key y, along with the client’s
ephemeral public value gx.

ComputeSecretAndValidate(x,gy,gb,A) → (S,{0,1}):
Computes the shared secret value, and authenticates
the resulting value using the peer’s long-lived public
key. Outputs the shared secret S and a Boolean value
indicating if the handshake is valid.

Verifiable Random Functions. Single-Pass Walking
Onions uses an idealized version of a Verifiable Random
Function similar to the VRF standard submitted to the IETF
for review [18]. We require the following VRF operations:

KeyGenV RF(1λ)→ (x,gx): Generates a private/public key-
pair with security parameter λ.

Prove(c,τ)→ (β,π): Computes a deterministic output β and
a proof π, given the VRF private key c and an input τ.

Veri f y(gc,β,τ,π)→ {0,1}: Verifies the correctness of the
VRF output using the VRF public key gc. Outputs a
Boolean value indicating if the proof is valid.

Vanilla Onion Routing. We describe our protocols with
reference to a generic Tor-like onion-routing protocol. We call
it Vanilla Onion Routing, and give a definition in Appendix C.

6



5.2 Telescoping Walking Onions
We now present Telescoping Walking Onions, a protocol to
extend an existing circuit by a single hop, and describe the
protocol using a step-by-step approach in Definition 1.

Description of protocol. Let Rn represent the last relay in
the client’s current circuit, and Rn+1 represent the relay the
client will extend the circuit to.

To extend a circuit in Telescoping Walking Onions, instead
of selecting a next hop Rn+1 directly, the client selects a ran-
dom index i such that 0≤ i < α. This index will fall within
an index range in the most recent ENDIVE, as described in
Section 4. The client sends i to the last relay Rn in their circuit,
along with the client’s half of the circuit extension handshake.
To find the next relay to extend the circuit to, Rn looks up
the client’s chosen i in the ENDIVE for the current epoch,
obtaining the unique SNIP whose index range contains i; this
SNIP Σn+1 corresponds to the relay that will become Rn+1.
The relay Rn starts by relaying the client’s handshake in a cir-
cuit extension request to Rn+1. Upon receiving the response
handshake from Rn+1, Rn relays that response to the client,
along with Σn+1. The client verifies Σn+1 is authentic and
valid (see Section 4.3). Further, the client verifies that Rn+1
was selected honestly, by checking that i falls within the index
range for the SNIP. Finally, the client uses the public keys
for Rn+1 in the SNIP to authenticate the handshake response
from Rn+1.

We present Telescoping Walking Onions in Definition 1,
building upon a generalized circuit extension protocol.

Definition 1. (Telescoping Walking Onions) We label each
step with P to denote a path selection operation, and K to
denote a key exchange operation for circuit extension. Steps
that differ from Vanilla Onion Routing (see Appendix C) are
underlined for emphasis.

Let (bn,gbn) denote the long-term key for relay Rn.
When the client extends an existing circuit:

1. [P] Select 0≤ i < α uniformly at random.
2. [K] Generate an ephemeral keypair

(x,gx)← KeyGenAuth(1λ).
3. [P,K] Send (i,gx) to Rn over the existing circuit.

When Rn receives a circuit extension request (i,gx):

4. [P] Obtain the SNIP Σn+1 whose index range contains i
in the most recent ENDIVE. This determines the relay
that will serve as Rn+1.

5. [K] Send the client’s gx to Rn+1.
6. [P, K] Wait for a response from Rn+1, and send it to the

client, along with Σn+1.

When Rn+1 receives the circuit extension request gx:

7. [K] Generate an ephemeral keypair (y,gy) ←
KeyGenAuth(); compute the shared secret and au-
thentication value
(S,A)←ComputeSecretAndAuth(gx,y,bn+1).

8. [K] Reply with (gy,A); derive circuit keys from S.

When the client receives a reply indicating the circuit was
extended:

9. [P] Verify the received SNIP Σn+1 is timely and cor-
responds to the chosen i. Verify the authentication tag
included in Σn+1. If the SNIP is not valid, abort. Other-
wise, extract gbn+1 from Σn+1.

10. [K] Complete the handshake: Compute
(S,V )←ComputeSecretAndValidate(x,gy,gbn+1 ,A). If
V 6= 1, abort; otherwise, derive circuit keys from S.

Scalability Goals. Telescoping Walking Onions fulfills
the scalability goals described in Section 3.2, as clients do not
need to maintain the complete network directory document.
It also maintains the same latency overhead for circuit con-
struction as Vanilla Onion Routing, since the network traffic
pattern remains the same, and uses the same number of round
trips.

Next, we assess the extent to which Telescoping Walking
Onions achieves its security goals (described in Section 3.2).

5.2.1 Analysis of Security Goals
Correctness: To maintain correctness, Telescoping Walking
Onions must ensure that each relay corresponds to the value i
provided by the client. Because each SNIP contains an index
range, along with an authentication tag, the client can validate
that their choice of i falls within the relay’s index range and
that the SNIP is generated by the authority for the anonymity
network. Furthermore, the client can check the timeliness of
the SNIP to ensure the SNIP is valid for the current epoch.

Security: To prevent the attacks described in Section 2,
Telescoping Walking Onions must ensure a client can validate
that their path has not been influenced by an intermediary. As
previously established, a client can validate that their choice
of i corresponds to the SNIP of the relay selected for the path.
Furthermore, as i can be selected from the full distribution
range up to α, the client can select any SNIP in the ENDIVE.
Consequently, a malicious on-path relay or intermediary can-
not constrain the client to select Rn+1 from only a subset of
all available relays. Finally, while a malicious on-path relay
can arbitrarily drop client connections to perform a denial-
of-service attack that can influence the final path [5], this
behaviour is the same as for existing onion-routing networks.

Privacy: To prevent information leakage to an observer,
messages sent in the clear must be unlinkable. (We consider
only bitwise unlinkability in our analysis, as protecting against
timing-based correlation is outside the scope of our threat
model.) As the client selects a fresh randomly generated (i,gx)
for each extension of the circuit, an intermediate node will not
be able to derive any further information about other relays
in the path (beyond the nodes immediately preceding and
following). Furthermore, as the client’s messages containing

7



(i,gx) are encrypted within the circuit connection between the
client and Rn, an adversary observing the network will not be
able to link the client and the circuit extension request sent
from Rn to Rn+1.

5.3 Single-Pass Walking Onions

While Telescoping Walking Onions presents minimal protocol
changes to an existing onion-routing network, it also requires
the same number of messages to iteratively create a new cir-
cuit as Vanilla Onion Routing. We now present Single-Pass
Walking Onions, a path-selection and circuit establishment
protocol with the same scalability benefits as Telescoping
Walking Onions, but using only a linear number of total mes-
sages relative to the path length. Further, the client now only
sends one and receives one message when building a circuit.

The key insight to Single-Pass Walking Onions is this: if
the client can be assured that i was selected at random without
interference by an intermediary, then the client does not need
to select i directly; this responsibility can be shared with
intermediate relays in the circuit so long as the client can
verify the choice of i was not influenced by any intermediary.

Building upon this insight, we next describe how this ran-
dom index i is generated in Single-Pass Walking Onions in
such a way that the client can verify no intermediary has
influenced it. To start, the client generates an ephemeral path-
selection keypair (d,gd), and sends its public value D = gd

to the first hop in the circuit (as mentioned above, we assume
the first hop in the circuit is already bootstrapped). Each relay
R j holds a semi-ephemeral path-selection keypair (c j,gc j).
Recall from before that each relay maintains a long-lived key
(b j,gb j). The index i is derived using contributions from both
the client and the relay, such that relay’s contribution remains
fixed within a single epoch to prevent the relay from manipu-
lating its input after observing the client’s input. The first hop
R j computes (i,π) = Prove(c j,Db j)—relay R j’s VRF output
(using its semi-ephemeral key c j) corresponding to the input
Db j , which itself is the Diffie-Hellman shared secret between
the client’s (d,D) and the relay’s long-term key. Relay R j
then blinds D using the Sphinx [11] technique: it computes
a blinding value v j = H(Db j) and changes D to Dv j before
passing it along to the relay selected by i.

We will further assess security properties of Single-Pass
Walking Onions in Section 5.3.1, but note here that the relay’s
path selection key is semi-ephemeral to prevent relays from
brute-forcing a favourable i by continuously re-generating
path-selection keypairs. Further, we bind knowledge of the
path-selection key to the relay’s long-lived key using the VRF.

This technique of reblinding the client’s public key at each
hop using a shared secret key as the blinding factor was first
introduced by Sphinx [11], and results in the client (and only
the client) having the capability to derive the corresponding
private key. In this way, Single-Pass Walking Onions departs
from Vanilla Onion Routing and Telescoping Walking Onions

by not requiring an iterative circuit establishment approach.
Description of protocol. We first describe some addi-

tional key points required to understand Single-Pass Walking
Onions, and then present the protocol in more detail in Defini-
tion 2, building upon a generalized circuit extension protocol.

To prevent a relay from biasing path-selection towards cho-
sen (for example, colluding) relays, we require each relay to
publish its path-selection public key in its SNIP, consequently
binding the relay to its key for as long as the SNIP is valid. If a
relay is compromised and an adversary learns its private path-
selection key, the clients’ path selections in previous epochs
enjoy forward secrecy because we require path-selection keys
to be rotated periodically. Because fresh keys are generated
for each key rotation, compromise of a path-selection key
will not impact the keys from past epochs. However, it will
reveal the paths selected by circuit creation through the com-
promised relay during the time the current path-selection key
was valid, even if the circuit was created before the compro-
mise itself. (It will not reveal the communication encryption
keys, however; those still enjoy immediate forward secrecy.)
Such a “windowing” approach to forward secrecy is well es-
tablished for privacy protocols in practice [32,44], and allows
for a slight relaxation in forward secrecy in exchange for
improved performance or functionality.

To indicate when circuit extension should terminate, the
client will also send a TTL (time to live) integer value θ

along with sending gx and gd . Each hop on the circuit will
decrement θ by one. The relay that receives θ = 0 will be
the final relay, and will not extend the circuit further. Note
that while θ is sent in cleartext, the ability for an adversary to
effectively use this information becomes more difficult as the
network size and number of participating clients grows, as
TTL information is only useful so long as the adversary can
perform an end-to-end correlation attack simply by observing
exposed network information.

Definition 2. (Single-Pass Walking Onions) As before, we
label each step with P to denote a path selection operation, and
K to denote a key exchange operation for circuit extension.
Let n denote the desired length of the circuit. Recall that the
client begins with authenticated information about the relay
R1 (see Section 5.6).

Let (b j,gb j) denote the long-term key and (c j,gc j) ←
KeyGenV RF(1λ) denote a path-selection keypair (rotated peri-
odically) for the jth relay in a given path, where 1≤ j ≤ n.

Let H denote a cryptographic hash mapping to Z∗q, where
q is the prime order of the group generated by g.
When the client initializes a circuit:

1. [K] Generate an ephemeral Diffie-Hellman keypair
(x,gx)← KeyGenAuth(1λ). This key will be used for de-
riving circuit-related session keys.

2. [P] Generate another ephemeral Diffie-Hellman keypair
(d,gd)← KeyGenV RF(1λ). This key will be used for
deriving path-related VRF inputs.

8



3. [P] Select a circuit extension time to live (TTL) θ= n−1,
where n is the desired circuit length

4. [P, K] Send (gx,gd ,θ) to R1

When R j ( j ≥ 1) receives a circuit extension request
(X ,D,θ > 0), where X and D are the iteratively reblinded
versions of the client’s original gx and gd public keys:

5. [K] Calculate an ephemeral Diffie-Hellman circuit
keypair (y j,gy j) ← KeyGenAuth(1λ); compute the cir-
cuit shared secret and authentication value (S j,A j)←
ComputeSecretAndAuth(X ,y j,b j)

6. [P] Derive the VRF output (β j+1,π j+1) ←
Prove(c j,Db j) using the relay’s path-selection private
key c j and private key b j. Obtain i j+1 = β j+1 mod α

to determine the next relay in the path R j+1 within the
required index range.

7. [P] Obtain the SNIP Σ j+1 whose index range contains
i j+1 in the most recent ENDIVE. This determines the
relay that will serve as R j+1.

8. [P] Compute the blinding value for the circuit public key
r j← H(S j)

9. [P] Compute the blinding value for the VRF input v j←
H(Db j)

10. [P, K] Send (X r j ,Dv j ,θ−1) to the next relay R j+1
11. [P, K] Wait for a response ρ j+1 from R j+1; re-

ply to the circuit extension request with ρ j =
(gy j ,A j,E j[Σ j+1,β j+1,π j+1,ρ j+1]), where E j is authen-
ticated encryption with circuit keys derived from S j.

When Rn receives a circuit extension request (X ,D,0):

12. [K] Generate an ephemeral Diffie-Hellman circuit
keypair (yn,gyn)← KeyGenAuth(1λ); compute the cir-
cuit shared secret and authentication value (Sn,An)←
ComputeSecretAndAuth(X ,yn,bn)

13. [K] Reply with ρn = (gyn ,An), and derive circuit keys
from Sn.

Recall that the client knows gb1 and gc1 , as above. When
the client receives a reply indicating the circuit has been
constructed, for 1≤ j ≤ n, do:

14. [K] Extract (gy j ,A j) from ρ j and compute the
shared secret S j with this relay as (S j,Vj) ←
ComputeSecretAndValidate(x · ∏

j−1
k=1 rk,gy j ,gb j ,A j),

aborting if Vj 6= 1. (Note that the product simply
evaluates to 1 if j = 1.) Derive circuit keys from S j. If
j = n, stop here; the circuit was successfully built.

15. Compute the VRF input as τ j = (gb j)δ j , where δ j =

d ·∏ j−1
k=1 vk, and compute the blinding value v j = H(τ j).

(Recall d was chosen in Step 2.)
16. [K] Decrypt the remainder of ρ j using the cir-

cuit keys. Abort if the decryption fails or if
Veri f y(gc j ,β j+1,τ j,π j+1) 6= 1. Otherwise compute the
blinding value r j← H(S j).

17. [P] Verify the the authentication tag of SNIP Σ j+1 and
that its index range contains (β j+1 mod α), aborting if
not.

18. [K] Extract gb j+1 and gc j+1 from Σ j+1.

Scalability Goals. As with Telescoping Walking Onions,
Single-Pass Walking Onions fulfills the scalability goals of
Section 3.2, as clients do not require a complete network
directory document. Furthermore, in Single-Pass Walking
Onions, clients experience only a single round trip, which can
be important on a high-latency connection.

We next assess the extent to which Single-Pass Walking
Onions achieves its intended security goals.

5.3.1 Analysis of Security Goals
Correctness: While the client does not directly select the
next relay for the circuit, the client does receive proof that
the relay was selected at random according to the desired
relay distribution, and that the selection was generated using
the client’s original randomly selected ephemeral gd and the
relays’ long-term and path-selection keys.

Security: As with Telescoping Walking Onions, so long
as each relay on the path is selected from a random distri-
bution in a way that only depends on the client’s choice of
randomness (and not a specially crafted value from an in-
termediary), the client can be assured that no intermediary
has influenced their path selection. Here, it is important that
each relay’s path-selection key is committed to in the SNIP
corresponding to that relay before the relay is ever sent the
client’s ephemeral key material, so that the relay cannot bias
the VRF output. Furthermore, clients are protected against
epistemic attacks, as all clients select any given relay with the
same probability. Finally, as above, a malicious relay can bias
the distribution of a client’s path by performing a selective
denial-of-service attack against the client’s request to extend
their circuit, thereby increasing the probability that a client’s
successfully established path includes malicious relays [5].
However, this risk in a Single-Pass Walking Onions setting
is no worse than in existing onion routing schemes where
on-path relays refuse client connections.

Privacy: As Single-Pass Walking Onions uses the Sphinx
reblinding technique to modify the client’s public key material
seen by each hop on the path, an intermediary with access to
all messages passing through the anonymity network will not
be able to bitwise correlate public key material for separate
hops in the same circuit. Furthermore, only the client (with
knowledge of their private key d) can derive the VRF input
for all hops in the path, so long as the relays’ private keys are
not compromised (and the relays do not collude).

5.4 Tradeoffs Between Protocols
We now discuss the performance and security tradeoffs be-
tween Telescoping and Single-Pass Walking Onions relative

9



Table 1: Tradeoffs: Telescoping, Single-Pass, Current Tor

 =achieved; #=not achieved; G#=partially achieved
3=performance property; †=security property

Telescop. Single-
Pass

Current
Tor

3 Constant-size client download   #
3 One round trip per circuit built #  #
† Complete client control of

relays selected
G# #  

† Forward-secret relay selection  G#  
† Forward secrecy for data    
† Relays unaware of their

positions in paths
G# # G#

to the path-selection and circuit-construction protocols used
by Tor (further described in Section 2). We summarize these
tradeoffs in Table 1.

Performance Tradeoffs. We evaluate performance of the
Walking Onions protocols in Section 7, but summarize these
tradeoffs here.

As Telescoping and Single-Pass Walking Onions do not
require clients to maintain a network directory document,
both protocols offer improved performance over current Tor in
bandwidth and storage requirements for clients, as the number
of relays increases. However, Telescoping Walking Onions
requires a quadratic number of messages and a linear number
of round trips from the client to construct a circuit relative
to the number of hops in the circuit. As such, Telescoping
Walking Onions matches the message complexity of Tor for
circuit construction. Conversely, Single-Pass Walking Onions
creates circuits with a linear number of messages and a single
round trip from the client, requiring less latency from a client’s
perspective. However, Single-Pass Walking Onions requires
additional computation at each hop due to additional key-
blinding operations.

Security Tradeoffs. Telescoping Walking Onions offers
partial client control over the selection of relays, as the client
can select only i but has no information about the relay, unlike
current Tor. This tradeoff may be consequential if the client
maintains many path restrictions and thus requires more infor-
mation about relays during path selection (see Section 6). Tele-
scoping Walking Onions provides the same levels of forward
secrecy as current Tor for client communication as well as the
selection of relays for a path. Similarly, Single-Pass Walking
Onions provides complete forward secrecy for client commu-
nications, but windowed forward secrecy for relay selection
after a predetermined period after which relays’ path-selection
keys are rotated. Because fresh path-selection keys are gen-
erated for each key rotation in Single-Pass Walking Onions,
compromise of a path-selection key will not impact the secu-
rity of paths outside of the window of time which the com-
promised key is used. Notably, Single-Pass Walking Onions
improves upon past single-pass circuit designs [9, 21, 31] (as

further described in Section 2) by ensuring immediate forward
secrecy for client communication.

Any relay in the first or last position of a circuit can learn its
position from its incoming and outgoing traffic. Consequently,
in a three-hop path, relays occupying the middle position can
also learn their position by process of elimination. However,
when paths are longer than three hops, Single-Pass Walking
Onions offers a slightly weaker property than Telescoping
Walking Onions or Vanilla Onion Routing, as Single-Pass
Walking Onions exposes to each on-path relay its distance
to the end of the path by revealing the TTL indicator θ. In
practice, the ability for an adversary to use this information is
correlated to characteristics of the anonymity network.

5.5 Hybrid Walking Onions Protocol
While the Single-Pass Walking Onions protocol allows a
client to optimistically build a new circuit, a fallback mecha-
nism is important when a client requires relays with specific
properties. For example, a client may require a relay to be in a
specific geographic location (see Section 6 for more details on
selecting relays restricted by some specific property). To sup-
port this case, a hybrid approach can be used, where instead
of building the complete circuit with Single-Pass Walking
Onions, the client uses Single-Pass Walking Onions to only
select n− ` relays for the circuit, and then uses the Telescop-
ing approach to specify the remaining ` relays. With this
approach, the client trades some of the performance benefit
from Single-Pass Walking Onions for additional control over
the selection of the ` relays in which Telescoping is used to
extend the circuit.

5.6 Bootstrapping the First Connection
Walking Onions assumes clients have sufficient information
to establish a connection to the first hop in the path. This
problem is not unique to Walking Onions; all anonymity net-
works require that new clients have a mechanism to connect
to the network. As such, anonymity networks using Walking
Onions have several options for clients to bootstrap. Here
we describe two options, but note that such bootstrapping is
comparatively infrequent, as clients in networks like Tor fix
long-lived “Guard” relays for this first position for up to six
months at a time to prevent enumeration attacks [15, 43].

Building from trusted relays. Many anonymity networks,
such as Tor, hardcode a list of stable relays in the client soft-
ware as a bootstrapping mechanism [13, 23]. To bootstrap a
first connection in Walking Onions, clients can build a circuit
using one of these pre-configured relays as the first hop. After
the circuit is complete, clients can extend it to an additional
relay that is suitable to serve as the first hop for future circuits.
(We discuss how clients can choose relays for different cri-
teria in Section 6.) The client can then remember this relay,
throw away the circuit, and build fresh circuits with this relay

10



as their first hop. This mechanism relies on the same security
assumptions as when sending traffic through multi-hop cir-
cuits; that is, that the cost to perform end-to-end correlation
between the client and its destination is sufficiently high.

Private Information Retrieval. Using PIR for client boot-
strapping in anonymity networks is well established in the
literature (as further described in Section 2), such as using a
set of PIR servers to serve a subset of relay information to Tor
clients [30, 34]. A similar approach can be used to bootstrap
the first hop of a circuit with Walking Onions. For example,
the client software can include a set of PIR servers, which
clients can query to obtain one or more SNIPs to use as the
first hop.

6 Complex Path Requirements

Until this point, we have presented path-selection protocols
assuming that all clients would always be selecting their
next relay from a single probability distribution; for example,
weighted by bandwidth. However, clients often have more
complex path requirements. For example, many networks re-
strict which relays can be selected for specific positions in a
client’s path, such as for the entry or for the exit positions. We
now present several mechanisms to accommodate complex
path requirements in Walking Onions.

Optimistic Attempt and Discard. A simple approach that
is acceptable when most relays support a given property is to
allow the client to optimistically build a circuit, but discard it
if the resulting path is not suitable. For example, if a client re-
quires a circuit whose final relay supports a common property
such as forwarding traffic to port 80 (http), they can simply
discard circuits ending with relays that do not fulfill this prop-
erty. However, if a client requires a less well-supported port,
such as port 25 (smtp), this approach is more costly.

Multiple Index Ranges. As discussed in Section 4.2, every
SNIP assigns a relay to a range of index values. The size of the
index range in a relay’s SNIP corresponds to the probability
of a client selecting that relay. Clients, however, may need to
select relays according to different probability distributions,
depending on the purpose the relay is to serve. In that case,
each SNIP would contain ranges for multiple indices, each
index corresponding to one of the probability distributions.

For example, Tor clients currently pick relays for the first
and last hops of their paths with different probability distri-
butions than they use when choosing middle nodes. Walking
Onions might implement this by giving each SNIP a separate
index range for each of the three probability distributions.
(See example in Appendix B.)

Note that if there are multiple index ranges, the client must
send not only the index value i during circuit construction,
but additionally an identifier ψ indicating which index to use.

Grouping by Class. When the number of properties grows,
however, representing each property as its own index range
would result in a linear growth of the SNIP. For example, in

Tor, relay operators can list ports to which their relay will
forward traffic exiting the network. If each index range is
encoded as 8 bytes in a SNIP, representing 65,535 TCP ports
as separate index ranges would increase each SNIP’s size by
524.28 KB: clearly too much. In this case, we can reduce the
number of properties by grouping exit ports into port classes,
putting two ports are into same class when every relay either
allows both or denies both. In an analysis of a snapshot of
the current Tor network, we find that the 65,535 ports can be
grouped into only 220 port classes. Each property in the SNIP
then corresponds to a port class. Furthermore, the designers of
an anonymity network can enforce the number of properties
to be below some threshold by restricting the flexibility of
which combinations are allowed.

Representing Properties in Merkle Trees. The strategy
of using one index range to represent a class of properties in
the SNIP still results in linear growth relative to the number
of properties represented in the SNIP. To address this issue,
and to keep the size of the SNIP independent of the number of
properties, the authority need not place the per-property index
ranges directly into each SNIP. Instead, for each relay, the
authority can construct a Merkle tree whose leaves are the per-
property index ranges for that relay, and only encode the root
of that tree into the relay’s SNIP. (The default index range for
each relay, not associated with a particular property, should
always explicitly appear in the SNIP for reasons we will see
shortly.) To enable relays to construct proofs demonstrating
that other relays fulfill a specific property, the authority should
additionally encode the properties each relay supports into
the ENDIVE for the network. Using each property and every
SNIP in the ENDIVE, relays can deterministically recompute
the per-property index ranges locally to reproduce the Merkle
trees for each relay in the network.

With this approach, SNIPs remain constant sized as the
number of properties grows, while the bandwidth needed for
circuit construction when specifying a particular required
property increases by the length of the Merkle path, logarith-
mic in the number of properties.

Delegated Verifiable Selection. Sometimes, the client
does not wish to reveal their required property ψ to an in-
termediate relay Rn for the selection of a relay Rn+1. For
example, a client wishing to connect to a relay that allows
forwarding to a specific port number may not wish to reveal
this property to an intermediate relay in the path during circuit
construction. We now discuss how to handle this case using a
technique we call Delegated Verifiable Selection.

After extending a circuit to relay Rn+1, if the client requires
Rn+1 to fulfill a specific property ψ, the client sends ψ to
Rn+1 through the circuit (thereby ensuring no intermediate
relay can learn ψ). If Rn+1 supports ψ, the circuit extension
to Rn+1 is considered complete and usable. Otherwise, Rn+1
computes an index i∗ (taken modα) derived from the hash
of the client’s messages to Rn+1 so far in the protocol. Relay
Rn+1 then selects the SNIP Σ whose index range for prop-

11



erty ψ contains i∗. Rn+1 replies to the client with Σ. Upon
receiving the recommended relay represented by Σ, the client
will destroy the circuit and then build a fresh circuit using the
relay corresponding to Σ in the (n+1)th position. The client
describes this relay using a new index i′ sampled from Σ’s
default index range, to avoid linkability with i∗.

Note that a limitation of this technique is it requires either
Telescoping or Hybrid Walking Onions, so the client can
directly specify the relay corresponding to their desired index.

7 Evaluation

We now compare the performance of Walking Onions pro-
tocols to Vanilla Onion Routing. We test the hypothesis that
Walking Onions offers lower bandwidth use than Vanilla
Onion Routing, and comparable performance in terms of CPU.
Further, we assess the extent to which Single-Pass Walking
Onions improves circuit creation latency for clients.

All of our code, data, and analysis scripts are available at
https://git-crysp.uwaterloo.ca/iang/walkingonions.

7.1 Bandwidth Evaluation
In order to compare the bandwidth used by our Walking
Onions protocols to that of Vanilla Onion Routing, we im-
plemented an onion routing network simulator, which we
describe next.

Description of Simulator. The simulator we implemented
in Python for this evaluation (available at the url above) mod-
els authorities, clients, and relays, using either Vanilla Onion
Routing or one of the Walking Onions protocol variants we
describe above. The simulator allows relays to register their
descriptors with the authority for the network each epoch,
and simulates both client and relay churn. Parties obtain con-
sensus documents or ENDIVEs (depending on the protocol)
at each epoch, using diffs if they have been online recently.
Clients construct circuits through the network using Vanilla
Onion Routing, Telescoping Walking Onions, or Single-Pass
Walking Onions, using either the Merkle or threshold signa-
ture SNIP authentication methods from Section 4.3. We do
not simulate sending data through the constructed circuits, as
that operation is unchanged between Vanilla Onion Routing
and Walking Onions. Our simulator sends messages among
authorities, clients, and relays, serializing the messages using
Python’s pickle functionality. Messages that we simulate
include those to download consensuses and ENDIVEs (and
their diffs), as well as those to create, extend, and tear down
circuits, whose instantiations depend on the circuit-extension
protocol under use, and many others.

Our simulator can be configured with a number of empiri-
cal parameters, outlined in Table 2, and discussed next. We
safely estimated the values of these parameters on the current
Tor network. We configure the scale of the simulator with
the parameter ζ, such that ζ = 1 corresponds to 6,500 relays

Table 2: Empirical parameters for our onion routing network
simulator, with values modeled after those in the current Tor
network. ζ is a free parameter specifying the scale of the
simulation.

A Number of authority voters 9
R Target number of relays 6,500 ·ζ
C Target number of clients 2,500,000 ·ζ

NH Number of hops per circuit 3
ηR Relay churn rate 0.010
σR Relay churn stddev 0.003
ηC Client churn rate 0.16
σC Client churn stddev 0.04
γ Average number of circuits

created per client per epoch
8.9

P∆ Average size of consensus diff
compared to full consensus

0.019

and 2,500,000 clients, roughly the scale of the today’s Tor
network.

We denote the number of authority voters as A, to which
every relay must upload its descriptor every epoch. R and
C are the target steady-state number of relays and clients
respectively, which will depend on ζ. Circuits are NH hops
long. To model relay churn, in each epoch, each relay will
leave the network with probability ηR, and a number of relays
selected from the normal distribution N(ηR ·R,σR ·R) will
join the network. (This causes the steady-state number of
relays to be R on average, as desired.) The parameters ηC
and σC similarly model client churn. The average number of
circuits created by each client per epoch is γ: the higher this
parameter, the more “active” clients are. The average fraction
of data required to send a diff of a consensus (or ENDIVE,
in Walking Onions) is P∆, as compared to sending the entire
document. We measure the number of bytes sent and received
by each client and relay in each epoch. We only consider the
measurements once the network has reached steady state; that
is, we ignore the initial epochs in which all relays and all
clients join the network and all have to bootstrap at once.

In addition to using our simulator to measure the number of
bytes actually transmitted by each relay and client per epoch,
we also compute analytical formulas to predict what these
measurements should be, in terms of the network scale ζ,
the empirical parameters in Table 2, and the byte sizes of
each message type when serialized by pickle. The complete
formulas are in the file analytical.py at the URL above.

We note that our pickle-based serialization is much more
efficient than the actual Tor message format for consensus
documents, which is text-based. For example, a real Tor client
requires approximately 2.5 MB to bootstrap a complete con-
sensus on the current Tor network, and 48 KB to keep it up
to date each epoch. The more efficient pickle, on the other
hand, allows our Vanilla Onion Routing clients to bootstrap

12

https://git-crysp.uwaterloo.ca/iang/walkingonions


 0
 5x106
 1x107

 1.5x107
 2x107

 2.5x107
 3x107

 3.5x107
 4x107

 4.5x107
 5x107

 0  500  1000  1500  2000

Number of relays

Relay total bytes each

Vanilla
Sing(M)
Tele(M)
Sing(T)
Tele(T)

Analytical

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0  500  1000  1500  2000

Number of relays

Client total bytes each

Vanilla
Sing(M)
Tele(M)
Sing(T)
Tele(T)

Analytical

Figure 1: Per-epoch total bytes used for each relay and client, for
Vanilla Onion Routing, and Single-Pass and Telescoping Walking
Onions. (M) indicates Merkle authentication, and (T) indicates
threshold signature authentication (Section 4.3). We plot the means
and stddevs from the simulation with solid lines, and the analytical
formulas in dashed lines. Note that the Single-Pass and Telescoping
lines are almost coincident in the client graph.

a complete consensus in just 1.4 MB and keep it up to date
with 27 KB per epoch (at ζ = 1). Our byte counts therefore
underestimate actual Tor usage, but are directly comparable
with each other. Importantly, if Walking Onions beats Vanilla
Onion Routing in our measurements, it is even that much
better than current Tor.

Evaluation Results. In Figure 1 we plot both the numbers
of bytes per epoch measured in our simulations, as well as the
analytical formulas. The largest simulations we ran were with
ζ = 0.30; simulating each Vanilla Onion Routing epoch at
that scale took a little over one day and up to 80 GB of RAM.
We find excellent agreement between the simulation results
and the formulas over the range of ζ values we simulated,
supporting that our formulas do not miss any important terms.
We then use the formulas to analyze the bandwidths used by
Walking Onions circuit creation for larger network sizes in
Figure 2 (note the log-log scale).

As we can see in Figure 2, for relays, at the current net-
work size, each relay already uses 4.4–6.2× (depending on
which version of Walking Onions is used) less bandwidth to
bootstrap, keep up to date, and construct circuits for clients,
as compared to Vanilla Onion Routing. As the network size
grows, the difference becomes even more stark. At 10 times
the current network scale, each relay uses 24–41× less band-
width for these tasks with Walking Onions than with Vanilla
Onion Routing. While all five formulas for the average band-
width used per relay are technically asymptotically linear, the
coefficients are very different: almost 15,000 additional bytes

 1x107

 1x108

 1x109

 1x1010

 1000  10000  100000

Number of relays

Relay total bytes each

Vanilla
Sing(M)
Tele(M)
Sing(T)
Tele(T)

Analytical

 10000

 100000

 1x106

 1x107

 1x108

 1000  10000  100000

Number of relays

Client total bytes each

Vanilla
Sing(M)
Tele(M)
Sing(T)
Tele(T)

Analytical

Figure 2: A zoom out of Figure 1, showing the asymptotic behaviour
of each of the circuit construction protocols. The vertical line is the
size of the current Tor network. Note the log-log scale.

per epoch per relay are used by Vanilla Onion Routing, and
just 6.75 (2200× less) by Telescoping Onion Routing with
Merkle authentication. As seen in Figure 2, the Merkle ver-
sions of Walking Onions are basically constant up to networks
two orders of magnitude larger than today’s Tor.

For clients, the situation is even better for Walking Onions.
For Walking Onions with threshold signatures, the per-client
per-epoch cost is constant, and with Merkle signatures, it is
logarithmic in the number of relays in the network. Vanilla
Onion Routing, however, is linear in the number of relays.
Even at the current network size, Walking Onions uses 10–
16× less bandwidth then Vanilla Onion Routing for bootstrap-
ping, keeping up to date, and constructing circuits. At 10×
the current network size, that jumps to 90–155×.

Further, we note that when considering a network with
many “on-demand” clients—those which infrequently use
the network but must still be prepared to construct circuits—
Vanilla Onion Routing proves more costly as more relays are
added to the network, due to the fact that idle clients must
continue to sync network state. On the other hand, Walking
Onions maintains a constant overhead for on-demand clients
regardless of a client’s usage pattern. Considering such on-
demand client behaviour is important for mobile applications
that are used infrequently, unpredictably, or have low band-
width, such as browsers [37] or messaging clients.

7.2 Latency Evaluation

We now evaluate the latency incurred by clients in both Vanilla
Onion Routing and Telescoping and Single-Pass Walking
Onions. We assess the latency that is experienced by clients
downloading an up-to-date copy of the latest network direc-

13



tory, and then as the latency experienced by clients when
building circuits (after they have bootstrapped).

Latency Incurred During Bootstrap. As observed in Fig-
ure 2, the asymptotic per-client traffic between Vanilla Onion
Routing and Walking Onions diverges significantly as the
number of relays in the network increases. The size of the
network directory in Vanilla Onion Routing is linear in the
number of relays, and this behaviour reflects the amount of
data that clients must download upon bootstrap. Consequently,
a client bootstrapping using Vanilla Onion Routing will incur
significantly higher latency as the network size grows, assum-
ing a constant rate of bandwidth over the client’s connection.
In comparison, clients in Walking Onions download only a
constant amount of information during bootstrap, and thus
the latency incurred for clients bootstrapping in a Walking
Onions setting remains unchanged as the network size grows.

Latency Incurred During Circuit Build. The primary
savings we expect for Single-Pass Walking Onions over Tele-
scoping or Vanilla Onion Routing is in the latency experienced
during circuit construction. The improvement of Single-Pass
Walking Onions is the same as that of other single-pass circuit
construction proposals: whereas Vanilla Onion Routing and
Telescoping Walking Onions both need a total of NH(NH +1)
messages before the circuit can be constructed, Single-Pass
Walking Onions uses only 2NH .

For clients with high-latency connections, the expected
benefit is even greater: the number of messages sent and re-
ceived by the client over their local link is just 2 in Single-Pass
Walking Onions, as opposed to 2NH in Telescoping Walking
Onions or Vanilla Onion Routing.

7.3 CPU Evaluation
We now evaluate the CPU cost for circuit extension as well
as the cost in CPU and memory of generating and validat-
ing ENDIVEs. We do not consider the CPU overhead for
clients and relays to download and validate network direc-
tory documents, as circuit-related operations will dominate
for workloads modelled after a live network in production.3

Finally, we evaluate only public-key group operations, and as-
sume the overhead for symmetric-key and hashing operations
is negligible in comparison.

We summarize our analysis for circuit extension in Table 3
and ENDIVE generation and validation in Table 4.

CPU Cost to Extend a Circuit. For specificity, we instan-
tiate the generic authenticated key exchange and VRF func-
tions from Section 5 with ntor [17], requiring two public key
operations for both clients and relays, and the IETF-proposed
VRF [18], which requires three each.

Notably, Telescoping Walking Onions incurs the same num-
ber of group operations for both clients and relays partici-
pating in a circuit extension as Vanilla Onion Routing. For

3In a live network, the total number of circuits created by clients will
typically far exceed the number of relays.

Table 3: Number of group operations to construct a circuit,
not considering SNIP validation cost

Protocol Per circuit

Clients
Vanilla Onion Routing 3NH

Telescoping WO 3NH

Single-Pass WO 6NH −2

Relays
Vanilla Onion Routing 3

Telescoping WO 3
Single-Pass WO 3 (last relay); 9 (other relays)

Table 4: Costs of SNIP Generation/Validation, and Auth Size

CPU cost measured in public-key operations
Cost to gener-
ate (per voter,
per ENDIVE)

Cost to validate
(per SNIP)

Authentication
tag size (per
SNIP)

One-Per-
Voter

NR NV NV signatures

Merkle
Proof

1 0 dlgNRe digests

Threshold
Signature

NR 1 1 signature

Single-Pass Walking Onions, additional group operations are
required for the blinding and VRF computations.

As described in Table 4, the cost to the client to validate
SNIPs after each circuit extension depends on the type of sig-
nature included within the SNIP. One point to note is that cer-
tain signatures allow for batch processing, allowing the client
to jointly verify all SNIPs in Single-Pass Walking Onions; we
do not account for this optimization in the above table.

CPU Cost for ENDIVE Generation and Validation. We
now evaluate the CPU performance of the authentication
mechanisms that we present in further detail in Section 4.3.

The most costly signature to both generate, validate, and
store is the One-Per-Voter approach, in which each SNIP is
signed individually by each of NV voters. Note that the cost
to each voter grows linearly with the number of relays, and
the cost to clients grows linearly with the number of voters.

Merkle signatures are smaller than Threshold Signatures
or the One-Per-Voter approach when considering the cost
to transmit an ENDIVE, as only a single root hash need be
authenticated and encoded in the ENDIVE; relays will re-
compute the Merkle tree on receipt of the ENDIVE to verify
the root hash. Furthermore, clients perform fewer public-key
operations during SNIP validation, as the Merkle root can be
validated just once per epoch when the client receives and
authenticates a network parameters document. After this step,
validation of SNIPs requires clients to only use hashing oper-
ations to validate the Merkle proof to demonstrate inclusion
of the SNIP in the ENDIVE.

Threshold signatures provide an attractive option as the
cost to validate a threshold signature is a single public-key

14



operation for clients, while the size of the signature remains
constant even as the number of voters attesting to the integrity
of the SNIP grows. However, the total cost to a single voter to
generate a threshold signature for each SNIP scales linearly
in the number of relays.

7.4 Comparisons to Other Designs

We now compare the scalability of Walking Onions to PIR-
based designs with similar goals to improve the scalability of
anonymity networks such as Tor. We include in our analysis
PIR-Tor [30] instantiated with both Computational PIR (C-
PIR) and Information-Theoretic PIR (IT-PIR) designs, as well
as ConsenSGX [34], which relies on trusted hardware. Recall
that we expand on the design and security and efficiency
tradeoffs of each of these designs in Section 2.

We assume clients request guard node information via an
out-of-band mechanism. However, each additional relay role
requires a separate PIR database. Consequently, PIR-Tor us-
ing C-PIR requires two PIR queries per circuit, as does Con-
senSGX. We assume an optimization for PIR-Tor using IT-
PIR [30] in which the client performs PIR queries for only
the exit node. We furthermore assume that PIR queries can be
performed in batch, such that one client request can contain
multiple PIR queries.

Bandwidth cost. While PIR-based designs require per-
forming at minimum one PIR query per circuit, Walking
Onions requires transmitting the SNIP for each relay during
circuit establishment. While the overhead for each PIR design
will vary, the bandwidth overhead for Walking Onions will
not be greater than C-PIR or IT-PIR based designs, as each
design requires the client to perform at minimum one PIR
query for each new circuit. For PIR designs based on trusted
hardware, Walking Onions queries will be slightly larger as
SNIPs contain the index ranges (Section 4.2) not required by
these PIR designs. (The PIR designs still require the per-entry
authentication tags and validity time fields, however.)

Computational cost. While the CPU cost per circuit con-
struction in Walking Onions remains constant for clients and
effectively constant (there may be a binary search to look up
the next relay whose SNIP contains the requested index) for
relays as the network scales, a server performing IT-PIR or
C-PIR must perform work linear in the number of relays. As
such, even if the computational cost of these PIR schemes
were acceptable today in a network the current size of the Tor
network, the cost for these designs increases as the network
scales, unlike Walking Onions. Note that the computational
cost for ConsenSGX similarly remains constant relative to
the number of relays.

Summary. IT-PIR and C-PIR based schemes both scale
linearly for client bandwidth and computation as the size
of the network grows, while the cost to clients in Walking
Onions remains constant. Although ConsenSGX has similar
performance benefits to Walking Onions, the dependence of

ConsenSGX on trusted hardware is undesirable to many real-
world security-critical projects.

8 Conclusion

To provide privacy to everyone on the Internet, anonymity
networks must be able to accommodate hundreds of mil-
lions, if not billions, of users. To reach these numbers, today’s
anonymity networks must adopt more efficient protocols.

As a step towards this goal, we present Walking Onions,
a set of protocols to remove the per-relay cost to clients in
bandwidth and memory as the number of relays grows, and to
reduce the latency for new circuit construction. Notably, our
protocols offer the same security against route capture and
epistemic attacks as prior work requiring a globally consistent
network view. We present mechanisms to safely offload path
selection from clients to intermediate relays in the client’s
circuit—even when the client maintains more complex path
requirements—without requiring the client to download the
full consensus. We evaluate these protocols in terms of band-
width and CPU relative to a generic onion-routing protocol.
Overall, we demonstrate that Walking Onions presents com-
pelling scalability improvements to anonymity networks, al-
lowing such networks to scale while maintaining constant-size
bandwidth and memory requirements for network information
downloaded by users.

Acknowledgments

Thanks to Peter Palfrader for his original design in proposal
141, and to the designers of PIR-Tor, both of which inspired
aspects of this Walking Onions design.

Thanks to David Goulet, Teor, George Kadianakis, and
Sajin Sasy for feedback on the earlier Walking Onions pro-
posal.

Thanks to Jack Grigg for the observation that in a com-
pletely decentralized network, SNIPs can be authenticated
using a randomly chosen set of relays as an authority mecha-
nism.

This research was supported in part by NSF grants CNS-
1526306 and CNS-1619454. We also thank the Royal Bank
of Canada and NSERC grant CRDPJ-534381 for funding
this work. This research was undertaken, in part, thanks to
funding from the Canada Research Chairs program. This work
benefitted from the use of the CrySP RIPPLE Facility at the
University of Waterloo.

References

[1] Yawning Angel, George Danezis, Claudia Diaz, Ania Pi-
otrowska, and David Stainton. Katzenpost Mix Network
Specification. https://katzenpost.mixnetworks.org/docs/
specs/mixnet.html, 2017. last accessed 2019-12-16.

15

https://katzenpost.mixnetworks.org/docs/specs/mixnet.html
https://katzenpost.mixnetworks.org/docs/specs/mixnet.html


[2] Dan Boneh, Manu Drijvers, and Gregory Neven. Com-
pact Multi-signatures for Smaller Blockchains. In
Thomas Peyrin and Steven Galbraith, editors, Advances
in Cryptology – ASIACRYPT 2018, pages 435–464.
Springer International Publishing, 2018.

[3] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav
Shacham. Aggregate and verifiably encrypted signa-
tures from bilinear maps. In Eli Biham, editor, Advances
in Cryptology — EUROCRYPT 2003, pages 416–432.
Springer Berlin Heidelberg, 2003.

[4] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
Signatures from the Weil Pairing. Journal of Cryptology,
17(4):297–319, Sep 2004.

[5] Nikita Borisov, George Danezis, Prateek Mittal, and
Parisa Tabriz. Denial of service or denial of security? In
Proceedings of the 14th ACM Conference on Computer
and Communications Security, CCS ’07, pages 92–102.
ACM, 2007.

[6] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-Order Execution. In 27th
USENIX Security Symposium (USENIX Security 18),
page 991–1008. USENIX Association, August 2018.

[7] Ran Canetti and Hugo Krawczyk. Security Analysis
of IKE’s Signature-based Key-Exchange Protocol. In
In: Proc. CRYPTO’02, Springer LNCS 2442, pages 143–
161. Springer-Verlag, 2002.

[8] Dario Catalano, Mario Di Raimondo, Dario Fiore,
Rosario Gennaro, and Orazio Puglisi. Fully Non-
interactive Onion Routing with Forward Secrecy. Inter-
national Journal of Information Security, 12(1):33–47,
Feb 2013.

[9] Dario Catalano, Dario Fiore, and Rosario Gennaro. Cer-
tificateless Onion Routing. In 16th ACM conference
on Computer and Communications Security, pages 151–
160. ACM, 2009.

[10] Chen Chen, Daniele Enrico Asoni, David Barrera,
George Danezis, and Adrian Perrig. Hornet: High-speed
onion routing at the network layer. In ACM Conference
on Computer and Communications Security, 2015.

[11] George Danezis and Ian Goldberg. Sphinx: A Compact
and Provably Secure Mix Format. 30th IEEE Sympo-
sium on Security and Privacy, pages 269–282, 2009.

[12] George Danezis and Paul Syverson. Bridging and Fin-
gerprinting: Epistemic Attacks on Route Selection. In

Nikita Borisov and Ian Goldberg, editors, Privacy En-
hancing Technologies, pages 151–166. Springer Berlin
Heidelberg, 2008.

[13] Roger Dingledine and Nick Mathewson. Tor Protocol
Specification. https://gitweb.torproject.org/torspec.git/
tree/tor-spec.txt, 2019.

[14] Roger Dingledine, Nick Mathewson, and Paul F. Syver-
son. Tor: The Second-Generation Onion Router. In
USENIX Security Symposium, 2004.

[15] Tariq Elahi, Kevin Bauer, Mashael AlSabah, Roger Din-
gledine, and Ian Goldberg. Changing of the Guards:
A Framework for Understanding and Improving Entry
Guard Selection in Tor. In Proceedings of the 2012
ACM Workshop on Privacy in the Electronic Society,
WPES ’12, pages 43–54. ACM, 2012.

[16] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling Byzan-
tine Agreements for Cryptocurrencies. In 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, pages
51–68. ACM, 2017.

[17] Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu.
Anonymity and one-way authentication in key exchange
protocols. Designs, Codes and Cryptography, 67, 02
2012.

[18] Sharon Goldberg, Leonid Reyzin, Dimitrios Papadopou-
los, and Jan Vcelak. Verifiable Random Functions
(VRFs). https://tools.ietf.org/html/draft-irtf-cfrg-vrf-05,
August 2019.

[19] I2P Project. I2P Threat Model. https://geti2p.net/en/
docs/how/threat-model.

[20] Aniket Kate and Ian Goldberg. Using Sphinx to Improve
Onion Routing Circuit Construction. In Radu Sion,
editor, Financial Cryptography and Data Security, pages
359–366. Springer Berlin Heidelberg, 2010.

[21] Aniket Kate, Greg Zaverucha, and Ian Goldberg. Pairing-
Based Onion Routing. In Nikita Borisov and Philippe
Golle, editors, Privacy Enhancing Technologies, pages
95–112. Springer Berlin Heidelberg, 2007.

[22] Akshaya Mani, T. Wilson-Brown, Rob Jansen, Aaron
Johnson, and Micah Sherr. Understanding Tor Usage
with Privacy-Preserving Measurement. In Internet Mea-
surement Conference 2018, IMC ’18, pages 175–187.
ACM, 2018.

[23] Nick Mathewson. Proposal 206: Preconfigured directory
sources for bootstrapping. https://gitweb.torproject.org/
torspec.git/tree/proposals/206-directory-sources.txt.

16

https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://tools.ietf.org/html/draft-irtf-cfrg-vrf-05
https://geti2p.net/en/docs/how/threat-model
https://geti2p.net/en/docs/how/threat-model
https://gitweb.torproject.org/torspec.git/tree/proposals/206-directory-sources.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/206-directory-sources.txt


[24] Nick Mathewson. Proposal 300: Walking Onions: Scal-
ing and Saving Bandwidth. https://gitweb.torproject.
org/torspec.git/tree/proposals/300-walking-onions.txt.

[25] Gregory Maxwell, Andrew Poelstra, Yannick Seurin,
and Pieter Wuille. Simple Schnorr multi-signatures with
applications to Bitcoin. Designs, Codes and Cryptogra-
phy, Feb 2019.

[26] Jon McLachlan, Andrew Tran, Nicholas Hopper, and
Yongdae Kim. Scalable Onion Routing with Torsk. In
16th ACM Conference on Computer and Communica-
tions Security, CCS ’09, pages 590–599. ACM, 2009.

[27] Ralph C. Merkle. A Digital Signature Based on a Con-
ventional Encryption Function. In A Conference on the
Theory and Applications of Cryptographic Techniques
on Advances in Cryptology, CRYPTO ’87, pages 369–
378. Springer-Verlag, 1988.

[28] Silvio Micali, Salil Vadhan, and Michael Rabin. Veri-
fiable Random Functions. In 40th Annual Symposium
on Foundations of Computer Science, FOCS ’99, pages
120–. IEEE Computer Society, 1999.

[29] Prateek Mittal and Nikita Borisov. ShadowWalker:
Peer-to-peer Anonymous Communication Using Redun-
dant Structured Topologies. In 16th ACM Conference
on Computer and Communications Security, CCS ’09,
pages 161–172. ACM, 2009.

[30] Prateek Mittal, Femi Olumofin, Carmela Troncoso,
Nikita Borisov, and Ian Goldberg. PIR-Tor: Scalable
Anonymous Communication Using Private Information
Retrieval. In 20th USENIX Security Symposium, pages
475–490, 2011.

[31] Lasse Øverlier and Paul Syverson. Improving Efficiency
and Simplicity of Tor Circuit Establishment and Hidden
Services. In Nikita Borisov and Philippe Golle, edi-
tors, Privacy Enhancing Technologies, pages 134–152.
Springer Berlin Heidelberg, 2007.

[32] Trevor Perrin and Moxie Marlinspike. The Dou-
ble Ratchet Algorithm. https://signal.org/docs/
specifications/doubleratchet/.

[33] Michael Reiter and Aviel D. Rubin. Crowds: Anonymity
for Web Transactions. ACM Transactions on Informa-
tion and System Security (TISSEC), 1:66–92, 01 1997.

[34] Sajin Sasy and Ian Goldberg. ConsenSGX: Scaling
Anonymous Communications Networks with Trusted
Execution Environments. PoPETs, 2019(3):331–349,
2019.

[35] Max Schuchard, Alexander W. Dean, Victor Heorhiadi,
Nicholas Hopper, and Yongdae Kim. Balancing the

Shadows. In 9th Annual Workshop on Privacy in the
Electronic Society, pages 1–10, 2010.

[36] Fatemeh Shirazi, Milivoj Simeonovski, Muham-
mad Rizwan Asghar, Michael Backes, and Claudia Diaz.
A Survey on Routing in Anonymous Communication
Protocols. ACM Comput. Surv., 51(3):51:1–51:39, June
2018.

[37] The Tor Project. Mozilla Research Call: Tune up Tor
for Integration and Scale. https://blog.torproject.org/
mozilla-research-call-tune-tor-integration-and-scale.

[38] The Tor Project. Tor Directory Protocol Specifica-
tion. https://gitweb.torproject.org/torspec.git/tree/dir-
spec.txt.

[39] The Tor Project. Tor Metrics—Number of Bytes
spent on answering directory requests. https:
//metrics.torproject.org/dirbytes.html?start=2019-11-
08&end=2020-02-06.

[40] The Tor Project. Tor Metrics—Relays. https://metrics.
torproject.org/networksize.html.

[41] The Tor Project. Tor Metrics—Total Relay Band-
width. https://metrics.torproject.org/bandwidth.html?
start=2019-11-08&end=2020-02-06.

[42] The Tor Project. Tor Metrics—Users. https://metrics.
torproject.org/userstats-relay-country.html.

[43] The Tor Project. Tor Guard Specification. https://gitweb.
torproject.org/torspec.git/tree/guard-spec.txt, 2019. last
accessed 2019-09-16.

[44] Nik Unger and Ian Goldberg. Deniable Key Exchanges
for Secure Messaging. In 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS
’15, pages 1211–1223. ACM, 2015.

[45] Qiyan Wang, Prateek Mittal, and Nikita Borisov. In
Search of an Anonymous and Secure Lookup: Attacks
on Structured Peer-to-peer Anonymous Communica-
tion Systems. In 17th ACM Conference on Computer
and Communications Security, CCS ’10, pages 308–318.
ACM, 2010.

[46] Bassam Zantout and Ramzi Ahmed Haraty. I2P Data
Communication System. In ICON 2011, 2011.

A Applying Walking Onions to Other
Anonymity Network Designs

While we use Tor as a case study, in Section 2 we say that
Walking Onions can be used by other anonymity networks.
We now present one such application.

17

https://gitweb.torproject.org/torspec.git/tree/proposals/300-walking-onions.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/300-walking-onions.txt
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://blog.torproject.org/mozilla-research-call-tune-tor-integration-and-scale
https://blog.torproject.org/mozilla-research-call-tune-tor-integration-and-scale
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://metrics.torproject.org/dirbytes.html?start=2019-11-08&end=2020-02-06
https://metrics.torproject.org/dirbytes.html?start=2019-11-08&end=2020-02-06
https://metrics.torproject.org/dirbytes.html?start=2019-11-08&end=2020-02-06
https://metrics.torproject.org/networksize.html
https://metrics.torproject.org/networksize.html
https://metrics.torproject.org/bandwidth.html?start=2019-11-08&end=2020-02-06
https://metrics.torproject.org/bandwidth.html?start=2019-11-08&end=2020-02-06
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html
https://gitweb.torproject.org/torspec.git/tree/guard-spec.txt
https://gitweb.torproject.org/torspec.git/tree/guard-spec.txt


HORNET [10] presents an onion-routing protocol opti-
mized for performance and is stateless for intermediate nodes
in a path. Messages sent through the network are encrypted
to each hop such that intermediate hops need only to per-
sist a symmetric key for decrypting packets. Once decrypted,
packet headers include all information the node requires for
processing the onion-encrypted packet. The protocol requires
a one-time setup phase in which the circuit is established
in a single pass using a variant of Sphinx [11]. However,
HORNET makes tradeoffs in security and assumptions of
additional infrastructure that may prove undesirable in prac-
tice. We will now discuss how the use of Walking Onions in
HORNET addresses two such cases.

First, HORNET assumes the existence of a safe mecha-
nism for distributing path information to the client, such that
paths are fully formed and short to improve performance over
free-routed networks. However, in practice, some anonymity
networks may seek to achieve the best of both worlds, to
leverage the efficient packet structure and packet transmission
techniques presented in HORNET while allowing clients to
enjoy as much anonymity as that of a free-routed network
such as Tor. As such, Walking Onions can be incorporated
into networks utilizing HORNET to achieve efficient distribu-
tion of network information and path selection.

Second, to establish a circuit in a single pass, HORNET cur-
rently requires the client to use the long-lived public key for
each node in a path to encrypt data in the setup phase. While
a variant of HORNET allows the node to use an ephemeral
key to establish the secret to encrypt client communication,
HORNET is not forward-secure for the selection of nodes in a
path in either variant. Applying Single-Pass Walking Onions
to HORNET improves security of path selection to be eventu-
ally forward-secure after a window of time, while retaining
the efficiency of establishing a circuit in a single pass.

B An Example ENDIVE

In Section 4.2 we introduced ENDIVEs and SNIPs, and in
Section 6 we added the notion of per-property index ranges
in SNIPs. Here, we work through an example of how an
ENDIVE might be generated for a simple network.

Suppose that we have a network with four relays, R1
through R4. These relays have different bandwidths, and dif-
ferent properties:

ID Bandwidth Exit? Entry?
R1 128 yes yes
R2 256 yes no
R3 512 no no
R4 128 yes yes

For Vanilla Onion Routing, all of these values are included
in a single signed directory document, as in:

Timestamp, Signature

ID Bandwidth Exit? Entry? Keys, etc
R1 128 yes yes ...
R2 256 yes no ...
R3 512 no no ...
R4 128 yes yes ...

For Walking Onions, we would place them in an ENDIVE
of independent SNIPs, such that every SNIP has a set of in-
dex ranges for each property that the client might want to
select. We assume α = 1024 for the sake of simplicity, and
use bandwidths as weights for the probability distributions.

Timestamp, Signature

ID Bandwidth Exit? Entry? Keys,
etc

Time-
stamp

Sig-
nature

R1 0–127 0–
255

0–
511

... ... ...

R2 128–383 256–
767

∅ ... ... ...

R3 384–895 ∅ ∅ ... ... ...
R4 896–

1023
768–
1023

512–
1023

... ... ...

Here we have an ENDIVE with four SNIPs. Each SNIP has
three index ranges: one default range for selecting general-
purpose relays, and two per-property ranges for selecting exit
or entry relays, respectively.

Suppose that a client is extending a circuit to general-
purpose relay. It picks at random i = 527, so the relay extends
to R3 and sends back the corresponding SNIP. The client can
verify that i falls in the range 383–895, that the timestamp is
live, and that the signature is correct. Thus, the client can be
sure that the key information in the SNIP correctly identifies
the relay that it chose (obliviously) with its random i.

C Vanilla Onion Routing protocol

In Section 5 we discuss how Walking Onions performs relay
selection and circuit construction in comparison to a generic
onion-routing protocol which we call Vanilla Onion Routing.
Furthermore, in Section 7, we evaluate the performance of
Walking Onions relative to Vanilla Onion Routing. We now
describe the step-by-step behaviour of Vanilla Onion Routing.

K denotes a key exchange operation, and P denotes a path
extension operation. Path extension and circuit establishment
are distinct operations but performed jointly. Let (bn,gbn)
denote the long-term key for relay Rn.
When the client extends an existing circuit:

1. [P] Select a random next relay Rn+1.

18



2. [K] Generate an ephemeral keypair
(x,gx)← KeyGenAuth(1λ).

3. [P,K] Send (Rn+1,gx) to Rn over the existing circuit.

When Rn receives a circuit extension request (i,gx):

4. [P] Ensure a connection exists to Rn+1.
5. [K] Send the client’s gx to Rn+1
6. [P, K] Wait for a response from Rn+1, and send it to the

client.

When Rn+1 receives the circuit extension request gx:

7. [K] Generate an ephemeral keypair (y,gy) ←
KeyGenAuth(); compute the shared secret and au-

thentication value
(S,A)←ComputeSecretAndAuth(gx,y,bn+1).

8. [K] Reply with (gy,A); derive circuit keys from S.

When the client receives a reply indicating the circuit was
extended:

9. [P] Look up the long-term key gb for Rn+1 locally.
10. [K] Complete the handshake: Compute

(S,V )←ComputeSecretAndValidate(x,gy,gbn+1 ,A). If
V = 0, abort; otherwise, derive circuit keys from S.

19


	Introduction
	Background
	Walking Onions Overview
	Threat Model
	Goals
	Key Design Insights

	Network Information in Walking Onions
	Notation and Terminology
	Encoding Network Directory Documents
	Authenticating ENDIVEs and SNIPs

	Walking Onions Path Selection and Circuit Extension
	Preliminaries
	Telescoping Walking Onions
	Analysis of Security Goals

	Single-Pass Walking Onions
	Analysis of Security Goals

	Tradeoffs Between Protocols
	Hybrid Walking Onions Protocol
	Bootstrapping the First Connection

	Complex Path Requirements
	Evaluation
	Bandwidth Evaluation
	Latency Evaluation
	CPU Evaluation
	Comparisons to Other Designs

	Conclusion
	Applying Walking Onions to Other Anonymity Network Designs
	An Example ENDIVE
	Vanilla Onion Routing protocol

